I would say when an atom has its valence electron shell filled like a noble gas has, it is not easily changed.
I’m not entirely sure of what you’re asking, but if you’re talking about bonding then it would be an ionic bond that is not easily changed.
Answer:
The amount of solute added.
Explanation:
The amount of solute added is directly proportional to the number of ions.
The higher the amount added the higher the number of moles.
The number of moles is multiplied by the Avogadro's constant to get the number ions.
No of ions= No of moles × L
L is the Avogadro's number.
Answer:
Purify drinking water of unwanted
<em>Hope this helps! :D</em>
Carbon dioxide has a total of 16 valence electrons. 1. To determine the number of valence electrons of carbon dioxide (CO2), first determine the number of valence electrons of each of the elements in the molecule.
a. We have 1 carbon (C) molecule, and 2 oxygen (O) molecules.
b. The carbon molecule has 4 valence electrons and each oxygen molecule has 6 oxygen molecules.
2. Add up the valence electrons of each of the elements
4 + (2 x 6) = 16
(from C) (2 oxygen molecules, with 6 valence electrons each)
Thus, CO2 has a total of 16 valence electrons.
The number of valence electrons can be more clearly seen from the Lewis structure of the CO2 in the figure below (Source: http://chemistry.tutorvista.com/inorganic-chemistry/bonding-electrons.html). The the dots surrounding the letters represent the valence electrons.
Answer:
76,6 kg
Explanation:
A kg it's equal to 1x10^3 grams
A Gigagrams it's equal to 1x10^9 grams
Knowing this, a kg it's equal to 1x10^6 gigagrams
![7,66*10^{-5}[gigagram]*\frac{1*10^6 [kg]}{1 [gigagram]}= 76.6 [kg]](https://tex.z-dn.net/?f=7%2C66%2A10%5E%7B-5%7D%5Bgigagram%5D%2A%5Cfrac%7B1%2A10%5E6%20%5Bkg%5D%7D%7B1%20%5Bgigagram%5D%7D%3D%2076.6%20%5Bkg%5D)