The density of an object determines whether it will float or sink in another substance. An object will float if it is less dense than the liquid it is placed in. An object will sink if it is more dense than the liquid it is placed in.
So since the boat has a lower density than the water, it will float.
So the answer is choice B
Hydrogen, helium, and carbon.
Answer:
KE = 2.03 J
Explanation:
After impact, the kinetic energy of the bullet+block will convert to potential energy
½mv² = mgh
v = √(2gh) = √(2(9.81)(0.00500) = 0.0981 m/s
conservation of momentum during the collision
0.015u + 2.50(0) = (2.50 + 0.015)(0.0981)
u = 16.4481 m/s
KE = ½mv² = ½(0.015)16.4481² = 2.0290499...
KE = 2.03 J
Current Speed, as it couldn't be the average speed or anything like that since it's constantly changing. (It made me write the extra stuff)
You're a little late. But if you want some short, quick rules, then these are
a couple that I would take in with me (stored only in my brain, of course):
-- If something is not accelerating or moving at all, then all the forces on it
must add up to zero. That could even mean a hanging rope.
-- In a vertical rope, the tension in it is the same everywhere in the rope.
The tension is the weight of whatever is hanging from the bottom.
That's really all I'm sure of, based on your hazy, fuzzy description of
what you've been doing in class. I don't want to get into things that
you might not have learned yet, and confuse you.