1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
scoundrel [369]
3 years ago
12

You construct a circuit containing some component C, along with other circuit elements. You want to simultaneously measure the c

urrent through C and the voltage across C while it remains connected to the rest of the circuit. Indicate where you would connect an ammeter (A) and a voltmeter (V) to perform these measurements. Fill any remaining gaps with wires as needed to complete the connection with the rest of the circuit.

Physics
1 answer:
astra-53 [7]3 years ago
6 0

Answer:

The position of the ammeter is in series down the component. While the voltmeter must be connected in parallel. Its position is the gap through the component C.

The positions of one or the other are indicated in the image.

Explanation:

An ammeter is defined as a device used to measure current. Its unit is the ampere. While a voltmeter is used in the measurement of the potential difference between two points. Its unit is the volt. The ammeter must be connected in series with the point at which the current is to be measured, while the voltmeter must be connected in parallel.

You might be interested in
If the action force is the swimmer pushing water in the leftward direction, what is the reaction force?
Sphinxa [80]
  • According to Newton's Third Law of Motion, to every action, there is an equal and opposite reaction; action and reaction act on different bodies.
  • Here, the action force is in the leftward direction, so the reaction will be in the opposite direction.
  • If the action force is the swimmer pushing water in the leftward direction, then the reaction force is in the rightward direction.
  • And the reaction force will be given by the water on the swimmer.

<u>Answer</u><u>:</u>

<u>The </u><u>reaction </u><u>force </u><u>is </u><u>the </u><u>water </u><u>pushing </u><u>the </u><u>swimmer </u><u>in </u><u>the </u><u>rightward </u><u>direction</u><u>.</u>

Hope you could get an idea from here.

Doubt clarification - use comment section.

3 0
2 years ago
An 8.0 cm object is 40.0 cm from a concave mirror that has a focal length of 10.0 cm. Its image is 16.0 cm in front of the mirro
svet-max [94.6K]
 We can rearrange the mirror equation before plugging our values in. 
1/p = 1/f - 1/q. 
1/p = 1/10cm - 1/40cm
1/p = 4/40cm - 1/40cm = 3/40cm
40cm=3p  <-- cross multiplication
13.33cm = p

Now that we have the value of p, we can plug it into the magnification equation.

M=-16/13.33=1.2
1.2=h'/8cm
9.6=h'

So the height of the image produced by the mirror is 9.6cm.
6 0
3 years ago
A car passes point “A” and then 120 meters later. It’s velocity was measured 21 m/s. If it’s acceleration was constant at 0.853
Norma-Jean [14]

Recall that

{v_f}^2-{v_i}^2=2a\Delta x

where v_i and v_f are the initial and final velocities, respecitvely; a is the acceleration; and \Delta x is the change in position.

So we have

\left(21\dfrac{\rm m}{\rm s}\right)^2-{v_i}^2=2\left(0.853\dfrac{\rm m}{\mathrm s^2}\right)(120\,\mathrm m)

\implies v_i\approx\boxed{15.4\dfrac{\rm m}{\rm s}}

(Normally, this equation has two solutions, but we omit the negative one because the car is moving in one direction.)

7 0
3 years ago
A scientist measures the growth of a bamboo plant over time. The table above shows the results. What is the best interference fo
lisabon 2012 [21]

(B) 2.25cm

<u>Explanation:</u>

Given:

At 40 hours, the height of the bamboo plant is 2.1cm

At 50 hours, the height of the bamboo plant is 2.4cm

Height of the bamboo plant after 45 hours = ?

The difference in length from 40 to 50 hours = 2.4 - 2.1cm

                                                                      = 0.3 cm

Mean of 40 and 50 is 45.

Thus,

At 45 hours, the height will increase by 0.3/2

                                                         = 0.15 cm

Height at 45 hour = 2.1 + 0.15cm

                           = 2.25cm

Therefore, the height of the plant after 45 hours is 2.25cm

7 0
3 years ago
A 70.0-kg person throws a 0.0480-kg snowball forward with a ground speed of 33.5 m/s. A second person, with a mass of 55.0 kg, c
saw5 [17]

Answer:

The final velocity of the thrower is \bf{3.88~m/s} and the final velocity of the catcher is \bf{0.029~m/s}.

Explanation:

Given:

The mass of the thrower, m_{t} = 70~Kg.

The mass of the catcher, m_{c} = 55~Kg.

The mass of the ball, m_{b} = 0.0480~Kg.

Initial velocity of the thrower, v_{it} = 3.90~m/s

Final velocity of the ball, v_{fb} = 33.5~m/s

Initial velocity of the catcher, v_{ic} = 0~m/s

Consider that the final velocity of the thrower is v_{ft}. From the conservation of momentum,

&& m_{t}v_{ft} + m_{b}v_{fb} = (m_{t} + m_{b})v_{it}\\&or,& v_{ft} = \dfrac{(m_{t} + m_{b})v_{it} - m_{b}v_{fb}}{m_{t}}\\&or,& v_{ft} = \dfrac{(70 + 0.0480)(3.90) - (0.0480)(33.5)}{70}\\&or,& v_{ft} = 3.88~m/s

Consider that the final velocity of the catcher is v_{fc}. From the conservation of momentum,

&& (m_{c} + m_{b})v_{fc} = m_{b}v_{it}\\&or,& v_{fc} = \dfrac{m_{b}v_{it}}{(m_{c} + m_{b})}\\&or,& v_{fc} = \dfrac{(0.048)(33.5)}{(55.0 + 0.0480)}\\&or,& v_{fc} = 0.029~m/s

Thus, the final velocity of thrower is 3.88~m/s and that for the catcher is 0.029~m/s.

8 0
3 years ago
Other questions:
  • A farsighted girl has a near point at 2.0 m but has forgotten her glasses at home. The girl borrows eyeglasses that have a power
    14·1 answer
  • The peak intensity of radiation from Star Beta is 350 nm. In what spectral band is this? UV, radio waves, visible light, or infa
    10·2 answers
  • A scientist is giving a demonstration with a Van de Graaff generator in a class about electrostatics. The scientist can detect t
    15·2 answers
  • Ishani and John now try a problem involving a charging capacitor. An uncharged capacitor with C = 6.81 μF and a resistor with R
    11·1 answer
  • A liquid thermometer can be used to test for fevers. When body temperature increases, the liquid inside the thermometer expands
    15·1 answer
  • Instrument used to measure the length of a football field​
    15·1 answer
  • Define thermopile and peltiers??​
    9·1 answer
  • A standing wave of the third harmonic is induced in a stopped pipe of length 1.2 m. The speed of sound through the air of the pi
    13·1 answer
  • A motobike's tire rotates with a constant angular speed of 62.8 rad/s. The radius of a tire is 30cm. Assuming that no slipping o
    12·1 answer
  • Which diagram best represents the gravitational forces, F, be-<br> tween a satellite, S, and Earth?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!