Answer:
3/4 cups of flour are needed.
Step-by-step explanation:
(3 2/3)/1=(2 3/4)/x
(11/3)/1=(11/4)/x cross multiply.
11x/3=11/4 cross multiply.
4*11x=3*11
44x=33
x=33/44
x=3/4
Answer:
(-7, -12)
Step-by-step explanation:
4x-3y=8
5x-2y=-11
Is there any of the like terms can be added and the result will be 0? No, so we have to multiple one OR both of the equations to make that one number do that.
(I will try to remove the y like terms so i will multiple both of them by the opposite so both of the ys will be 6)
2(4x-3y=8)
-3(5x-2y=-11)
8x-6y=16
-15x+6y=33
(now the easy part… cancel the 6s and add the equations)
8x+(-15x)=-7x
16+33=49
-7x=49
(divide 49 by -7)
x=-7
Replace x in any of the equations and you’ll get the y value.
4x-3y=8
4(-7)-3y=8
-28-3y=8
-3y=36
y=12
Threfore, there is one solution which is….. (-7,-12)
Answer:
Respuesta D
Step-by-step explanation:
Paola afirma: Todo número compuesto par, se puede escribir como la multiplicación de factores primos.
Esta afirmación es cierta, pues es un caso de la afirmación de que todo número natural mayor que uno se puede escribir como multiplicación de números primos. A este proceso se le llama descomposición en factores primos.
Edwin afirma: Todo número compuesto impar se puede escribir como la suma de dos números primos.
Esta afirmación es falsa. Note que al sumar dos números impares de la forma 2k+1 y 2m+1 para k distinto de m, se obtiene

Es decir, la suma de dos números impares es siempre par.
Note que a excepción de 2, todo número primo es impar. Para que esta afirmación fuera cierta, necesariamente tendría que pasar que cualquier número impar k se escriba de la forma p+2 donde p es un número primo. Esto es equivalente que para cualquier número impar k, el número k-2 sea primo.
Basta con dar un ejemplo para ver que esto no pasa. Tomemos k=11. En este caso, k-2 = 9, el cuál no es un número primo. Entonces 11 no se puede descomponer como la suma de dos números primos.
<h3>
Answer: 24</h3>
Explanation:
The mode corresponds directly to the most frequent leaf, ie the leaf that shows up the most. This is because the mode itself is the most frequent value of a list of numbers. Be sure to keep the rows separate. The leaf "5" shows up twice, but it's for two different stems. The leaf "7" is a similar story.
In row two, we have the leaf "4" show up three times which is the most of any leaf for any given stem. Tie that leaf to the stem 2 and we get the value 24.
The mode is 24.