1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DochEvi [55]
2 years ago
7

Helppppppppppp:)))))))))

Mathematics
1 answer:
Whitepunk [10]2 years ago
4 0

Hi there!

We are given the set of ordered pairs below:

\large \boxed{(3, - 1),(2, - 2),(0,2),(2,1)}

1. What is the domain?

  • Domain is a set of all x-values in one set of ordered pairs. So what are the x-values that I am talking about? In ordered pairs, we define x and y which both have relation to each others which we can write as (x,y). That's right, the domain is set of all x-values from ordered pairs.

Therefore, we gather only x-values from (x,y). Hence, the domain is {3,2,0,2}. Whoops! Something is not right. As we learn in Set Theory that we don't write the same or repetitive in a set. Hence, <u>t</u><u>h</u><u>e</u><u> </u><u>a</u><u>c</u><u>t</u><u>u</u><u>a</u><u>l</u><u> </u><u>d</u><u>o</u><u>m</u><u>a</u><u>i</u><u>n</u><u> </u><u>i</u><u>s</u><u> </u><u>{</u><u>0</u><u>,</u><u>2</u><u>,</u><u>3</u><u>}</u>

2. What is the range?

  • Because domain is set of all x-values. Then what do you think the range is? That's right! The range is <u>s</u><u>e</u><u>t</u><u> </u><u>o</u><u>f</u><u> </u><u>a</u><u>l</u><u>l</u><u> </u><u>y</u><u>-</u><u>v</u><u>a</u><u>l</u><u>u</u><u>e</u><u>s</u><u>.</u> If you got this right before looking up the underlined words then a handclap for you! So how do we find range? Simple, we just do like finding the domain in the Q1, except we gather the y-values in (x,y) instead and make sure that we don't write same number!

Therefore, gather y-values from the ordered pairs. Hence, <u>t</u><u>h</u><u>e</u><u> </u><u>r</u><u>a</u><u>n</u><u>g</u><u>e</u><u> </u><u>i</u><u>s</u><u> </u><u>{</u><u>-</u><u>2</u><u>,</u><u>-</u><u>1</u><u>,</u><u>1</u><u>,</u><u>2</u><u>}</u>

3. Is the relation a function?

  • All functions are relations but not all relations are functions. Function is a set of ordered pairs where <u>d</u><u>o</u><u>m</u><u>a</u><u>i</u><u>n</u><u> </u><u>i</u><u>s</u><u> </u><u>n</u><u>o</u><u>t</u><u> </u><u>r</u><u>e</u><u>p</u><u>e</u><u>t</u><u>i</u><u>t</u><u>i</u><u>v</u><u>e</u><u> </u><u>o</u><u>r</u><u> </u><u>i</u><u>n</u><u> </u><u>a</u><u> </u><u>s</u><u>e</u><u>t</u><u>,</u><u> </u><u>t</u><u>h</u><u>e</u><u>r</u><u>e</u><u> </u><u>c</u><u>a</u><u>n</u><u>n</u><u>o</u><u>t</u><u> </u><u>b</u><u>e</u><u> </u><u>m</u><u>o</u><u>r</u><u>e</u><u> </u><u>t</u><u>h</u><u>a</u><u>n</u><u> </u><u>o</u><u>n</u><u>e</u><u> </u><u>s</u><u>a</u><u>m</u><u>e</u><u> </u><u>v</u><u>a</u><u>l</u><u>u</u><u>e</u><u>.</u> Consider the following relation: (1,1),(1,2) - Oh, looks like in a set of ordered pairs, there are two same domains which make it only a relation, and not a function. On the other hand, (1,1),(2,2) - Looking good! No same or repetitive domain, making it indeed a function.

Consider the domain from Q1 and see if there are two same values of x in a set. Looks like the relation is not a function since there are same x-values which are 2 in a set, making it only a relation. Hence, the relation is not a function.

These are all 3 answers along with an explanation. Let me know if you have any doubts regarding Relations and Functions.

<em>F</em><em>r</em><em>o</em><em>m</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>Q</em><em>1</em><em>'</em><em>s</em><em> </em><em>a</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em>,</em><em> </em><em>t</em><em>h</em><em>e</em><em>r</em><em>e</em><em> </em><em>a</em><em>r</em><em>e</em><em> </em><em>t</em><em>w</em><em>o</em><em> </em><em>b</em><em>o</em><em>l</em><em>d</em><em> </em><em>t</em><em>e</em><em>x</em><em>t</em><em>s</em><em>,</em><em> </em><em>p</em><em>l</em><em>e</em><em>a</em><em>s</em><em>e</em><em> </em><em>c</em><em>h</em><em>o</em><em>o</em><em>s</em><em>e</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>s</em><em>e</em><em>c</em><em>o</em><em>n</em><em>d</em><em> </em><em>b</em><em>o</em><em>l</em><em>d</em><em> </em><em>t</em><em>e</em><em>x</em><em>t</em><em> </em><em>t</em><em>o</em><em> </em><em>a</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em> </em><em>(</em><em>t</em><em>h</em><em>e</em><em> </em><em>o</em><em>n</em><em>e</em><em> </em><em>w</em><em>i</em><em>t</em><em>h</em><em> </em><em>u</em><em>n</em><em>d</em><em>e</em><em>r</em><em>l</em><em>i</em><em>n</em><em>e</em><em>)</em><em> </em><em>a</em><em>n</em><em>d</em><em> </em><em>n</em><em>o</em><em>t</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>f</em><em>i</em><em>r</em><em>s</em><em>t</em><em> </em><em>o</em><em>n</em><em>e</em><em> </em><em>(</em><em>t</em><em>h</em><em>e</em><em> </em><em>o</em><em>n</em><em>e</em><em> </em><em>w</em><em>i</em><em>t</em><em>h</em><em> </em><em>s</em><em>a</em><em>m</em><em>e</em><em> </em><em>2</em><em>'</em><em>s</em><em>)</em><em>.</em><em> </em>

Good luck on your assignment, have a nice day!

You might be interested in
Please help me I don’t know it. Can I get an step by step explanation please?
agasfer [191]

Answer:

The answer is no

Step-by-step explanation:

Even though there are 8 pieces its not even

Pls let me know if the answer is correct or not

3 0
2 years ago
Read 2 more answers
If the vertex of a parabola is at (2, 3) and the point (0, -1) is also on the parabola, find an equation for the parabola. Write
STALIN [3.7K]

Answer:

y=-1(x-2)^2+3

Step-by-step explanation:

W have been given that the vertex of a parabola is at (2, 3) and the point (0, -1) is also on the parabola. We are asked to find the equation of parabola in the form y=(x-h)^2+k.  

We know that vertex form of parabola in form y=a(x-h)^2+k, where (h,k) in vertex of parabola.  

Upon substituting coordinates of vertex, we will get:

y=a(x-2)^2+3

To find the value of a, we will substitute coordinates of point (0, -1) as:

-1=a(0-2)^2+3

-1=a(4)+3

-1=4a+3

-1-3=4a+3-3

-4=4a

\frac{-4}{4}=\frac{4a}{4}

-1=a

Therefore, our required equation would be y=-1(x-2)^2+3.

3 0
3 years ago
Help please with these questions
sergeinik [125]

Answer:

1. There is a <u><em>1/5</em></u> chance you will get a blue one from both bags.

2. There is a <u><em>3/32</em></u> chance you will get a 1 and then a 2.

3. There is a <u><em>5/12</em></u> chance of rolling a factor of 12 and then an odd number.

Step-by-step explanation:

<u><em>Question 1</em></u>

Add all the marbles together.

3 + 2 = 5

4 + 2 = 6

Make a fraction.

blue/all

Use it on the numbers.

3/5

2/6

Multiply them together.

6/30

Simplify.

1/5

There is a <u><em>1/5</em></u> chance you will get a blue one from both bags.

<u><em>Question 2</em></u>

Add all the numbers together.

There are 8.

Make the two crucial fractions.

ones/all

twos/all

Use them.

3/8

2/8

Multiply them together.

6/64

Simplify.

3/32

There is a <u><em>3/32</em></u> chance you will get a 1 and then a 2.

<u><em>Question 3</em></u>

Find the factors of 12.

1, 2, 3, 4, 6

Make a fraction.

factors/all

Use the fraction.

5/6

Find the odd numbers.

1, 3, 5

Make a fraction.

odd/all

Use the fraction.

3/6

Multiply them together.

15/36

Simplify.

5/12

There is a <u><em>5/12</em></u> chance of rolling a factor of 12 and then an odd number.

8 0
2 years ago
You are designing a rectangular poster to contain 7575 in2 of printing with a 33​-in margin at the top and bottom and a 11​-in m
erma4kov [3.2K]

Answer:

The dimensions of the rectangular poster is 15 in by 5 in.

Step-by-step explanation:

Given that, the area of the rectangular poster is 75 in².

Let the length of the rectangular poster be x and the width of the rectangular poster be y.

The area of the poster = xy in².

\therefore xy=75

\Rightarrow y=\frac{75}{x}....(1)

1 in margin at each sides and 3 in margin at top and bottom.

Then the length of printing space is= (x-2.3) in

                                                           =(x-6) in

The width of printing space is = (y-2.1) in

                                                  =(y-2) in

The area of the printing space is A =(x-6)(y-2) in²

∴ A =(x-6)(y-2)

Putting the value of y

\Rightarrow A =(x-6)(\frac{75}{x}-2)

\Rightarrow A = 87-\frac{450}{x}-2x

Differentiating with respect to x

A '= \frac{450}{x^2}-2

Again differentiating with respect to x

A''=-\frac{900}{x^3}

To find the minimum area of printing space, we set A' = 0

\therefore \frac{450}{x^2}-2=0

\Rightarrow 450 =2x^2

\Rightarrow x^2=225

\Rightarrow x=\pm 15

Now putting x=±15 in A''

A''|_{x=15}=-\frac{900}{15^3}

A''|_{x=-15}=-\frac{900}{(-15)^3}=\frac{900}{(15)^3}>0

Since at x=15 , A"<0 Therefore at x=15 , the area will be minimize.

From (1) we get

y=\frac{75}{x}

Putting the value of x

y=\frac{75}{15}

   =5 in

The dimensions of the rectangular poster is 15 in by 5 in.

4 0
3 years ago
Write this into a equation
solniwko [45]
Let the number be 'x'.

Three times a number will then give 3x
Therefore the equation will be:
3x - 4 = 5
4 0
3 years ago
Other questions:
  • A rectangular flower garden in Samantha’s backyard has 100 feet around its edge the width of the garden is 20 feet what is the l
    8·1 answer
  • Help please asap don’t know this question
    10·1 answer
  • X2 + y2 – 4x + 10y + 4 = 0.<br> find the center and radius of a circle
    11·1 answer
  • What is the sum of the arithmetic sequence 149, 135, 121, …, if there are 28 terms?
    7·1 answer
  • What is the volume of a spear with the radius of 6in.
    13·1 answer
  • 4/7 is 2/3 of what number
    14·1 answer
  • Which equation, in slope-intercept form, represents the relationship shown in this table?
    11·1 answer
  • Because of the increase in traffic between Springfield and Orangeville, a new road was built to connect the two towns. The old r
    8·1 answer
  • Mark bought 420 watermelons. he ate 69 of them. how many are left​
    12·2 answers
  • Write the equation of the line in fully simplified slope-intercept form.
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!