36 cm^2
Step-by-step explanation:
<u>Small</u><u> </u><u>window</u>
Length: 2cm
Width: 2cm
<u>Area</u><u>:</u> 4 cm^2
<u>Big window</u>
Length: 4cm
Width: 3cm
<u>Area</u><u>:</u> 12 cm^2
Total area of the windows:
(Area of 4 small windows + area of 1 big window)
(4 cm^2 x 4 + 12cm^2)
= <u>28 cm^2</u>
<u>Above</u><u> </u><u>window</u><u> </u><u>(</u><u>approx</u><u>.</u><u>)</u>
<u>Rectangle</u>
Length: 3cm
Width: 2cm
<u>Area</u><u>:</u> 6 cm^2
<u>T</u><u>riangle</u>
Base: 1cm
Height: 1cm
<u>Area</u><u>:</u> 2 x 0.5 cm^2 = 1 cm^2
<u>Square</u><u> </u><u>(</u><u>between</u><u> </u><u>the</u><u> </u><u>triangles</u><u>)</u>
Length: 1cm
Width: 1cm
<u>Area</u><u>:</u> 1 cm^2
= 8 cm^2
<u>TOTAL</u><u> </u><u>AREA</u><u> </u><u>OF</u><u> </u><u>ALL</u><u> </u><u>WINDOWS</u>
= AREA OF 4 WINDOWS + AREA OF BIG WINDOW + AREA OF ABOVE WINDOW
= 16 cm^2 + 12 cm^2 + 8 cm^2
<h3>
= <u>
36 cm^2</u></h3>
<em>I</em><em> </em><em>hope</em><em> </em><em>I</em><em> </em><em>made</em><em> </em><em>the</em><em> </em><em>explanations</em><em> </em><em>clear</em><em> </em><em>enough</em><em> </em><em>to</em><em> </em><em>make</em><em> </em><em>it</em><em> </em><em>easier</em><em> </em><em>for</em><em> </em><em>you</em><em> </em><em>to</em><em> </em><em>understand</em><em>!</em>
Answer:
1
Step-by-step explanation:
extending answer to be able to send
Answer:
-31
Step-by-step explanation:
(2×x) - (2×5) = (3×x) + (3×7)
2x-10 = 3x+21
2x-3x = 21+10
-x = 31
therefore, x = -31
Answer:
1006
Step-by-step explanation:
Take proportion, p = 62%
n = (Z² * pq) / M.E²
Margin error = 0.03
p = 62% = 0.62
q = 1 - p = 1 - 0.62 = 0.38
Zcritical at 95% = 1.96
n = (1.96² * (0.62*0.38)) / 0.03²
n = 0.90508096 / 0.0009
n = 1005.6455
n = 1006
Sample size = 1006
<u>Given</u>:
Given that FGH is a right triangle. The sine of angle F is 0.53.
We need to determine the cosine of angle H.
<u>Cosine of angle H:</u>
Given that the sine of angle F is 0.53
This can be written as,

Applying the trigonometric ratio, we have;
----- (1)
Now, we shall determine the value of cosine of angle H.
Let us apply the trigonometric ratio
, we get;
----- (2)
Substituting the value from equation (1) in equation (2), we get;

Thus, the cosine of angle H is 0.53