1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
leva [86]
3 years ago
10

Will mark brainlest how to multipy it​

Mathematics
1 answer:
Lesechka [4]3 years ago
6 0

Answer:

\displaystyle x   = 2 \sqrt{3}

Step-by-step explanation:

we would like to solve the following equation:

\displaystyle  \sqrt{3}  =  \frac{6}{x}

in order to do so do cross multiplication:

\displaystyle x \sqrt{3}  =  6

divide both sides by √3:

\displaystyle x   =   \frac{6}{ \sqrt{3}}

since we ended up with a square root on the denominator so we can consider rationalising the denominator to do so multiply both numerator and denominator by √3 which yields:

\displaystyle x   =   \frac{6}{ \sqrt{3}}  \times  \frac{ \sqrt{3} }{ \sqrt{ 3} }

simplify multiplication:

\displaystyle x   =   \frac{6 \sqrt{3} }{ 3}

reduce fraction:

\displaystyle x   = 2 \sqrt{3}

and we are done!

You might be interested in
A carpenter is assigned the job of expanding a rectangular deck where the width is one-fourth the length. The length of the deck
leva [86]
Let the width be W, then the length is 4W (since the width is 1/4 the length)

The area of the original deck is W*4W=4W^{2}

The dimensions of the new deck are :

length = 4W+6
width=W+2

so the area of the new deck is :

(4W+6)(W+2)= 4W^{2}+8W+6W+12= 4W^{2}+14W+12

"<span>the area of the new rectangular deck is 68 ft2 larger than the area of the original deck</span>" means that we write the equation:

4W^{2}+14W+12=68+4W^{2}

14W+12=68

14W=68-12=56

W= \frac{56}{14}= 4

the length is 4W=4*4=16    ft


Answer: width: 4, length: 16
3 0
3 years ago
HELP MEE!!!
SIZIF [17.4K]

A- none because they are parallel lines

5 0
3 years ago
Some types of algae have the potential to cause damage to river ecosystems. Suppose the accompanying data on algae colony densit
Phantasy [73]

Answer:

y=-2.95836 x +234.56159

Step-by-step explanation:

We assume that th data is this one:

x: 50, 55, 50, 79, 44, 37, 70, 45, 49

y: 152, 48, 22, 35, 43, 171, 13, 185, 25

a) Compute the equation of the least-squares regression line. (Round your numerical values to five decimal places.)For this case we need to calculate the slope with the following formula:

m=\frac{S_{xy}}{S_{xx}}

Where:

S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n}

S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}

So we can find the sums like this:

\sum_{i=1}^n x_i =50+ 55+ 50+ 79+ 44+ 37+ 70+ 45+ 49=479

\sum_{i=1}^n y_i =152+ 48+ 22+ 35+ 43+ 171+ 13+ 185+ 25=694

\sum_{i=1}^n x^2_i =50^2 + 55^2 + 50^2 + 79^2 + 44^2 + 37^2 + 70^2 + 45^2 + 49^2=26897

\sum_{i=1}^n y^2_i =152^2 + 48^2 + 22^2 + 35^2 + 43^2 + 171^2 + 13^2 + 185^2 + 25^2=93226

\sum_{i=1}^n x_i y_i =50*152+ 55*48+ 50*22+ 79*35+ 44*43+ 37*171+ 70*13+ 45*185+ 49*25=32784

With these we can find the sums:

S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}=26897-\frac{479^2}{9}=1403.556

S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}=32784-\frac{479*694}{9}=-4152.22

And the slope would be:

m=-\frac{-4152.222}{1403.556}=-2.95836

Nowe we can find the means for x and y like this:

\bar x= \frac{\sum x_i}{n}=\frac{479}{9}=53.222

\bar y= \frac{\sum y_i}{n}=\frac{694}{9}=77.111

And we can find the intercept using this:

b=\bar y -m \bar x=77.1111111-(-2.95836*53.22222222)=234.56159

So the line would be given by:

y=-2.95836 x +234.56159

7 0
3 years ago
Morgan earned $70.00 at her job when she worked for 4 hours. How much money did she earn each hour?
Mila [183]

Answer:

divide the 70.00 by the four hours

Step-by-step explanation:

4 0
2 years ago
Find the area of the region enclosed by the graphs of the functions
Vaselesa [24]

Answer:

\displaystyle A = \frac{8}{21}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Terms/Coefficients
  • Functions
  • Function Notation
  • Graphing
  • Solving systems of equations

<u>Calculus</u>

Area - Integrals

Integration Rule [Reverse Power Rule]:                                                                 \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                      \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Addition/Subtraction]:                                                          \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

*Note:

<em>Remember that for the Area of a Region, it is top function minus bottom function.</em>

<u />

<u>Step 1: Define</u>

f(x) = x²

g(x) = x⁶

Bounded (Partitioned) by x-axis

<u>Step 2: Identify Bounds of Integration</u>

<em>Find where the functions intersect (x-values) to determine the bounds of integration.</em>

Simply graph the functions to see where the functions intersect (See Graph Attachment).

Interval: [-1, 1]

Lower bound: -1

Upper Bound: 1

<u>Step 3: Find Area of Region</u>

<em>Integration</em>

  1. Substitute in variables [Area of a Region Formula]:                                     \displaystyle A = \int\limits^1_{-1} {[x^2 - x^6]} \, dx
  2. [Area] Rewrite [Integration Property - Subtraction]:                                     \displaystyle A = \int\limits^1_{-1} {x^2} \, dx - \int\limits^1_{-1} {x^6} \, dx
  3. [Area] Integrate [Integration Rule - Reverse Power Rule]:                           \displaystyle A = \frac{x^3}{3} \bigg| \limit^1_{-1} - \frac{x^7}{7} \bigg| \limit^1_{-1}
  4. [Area] Evaluate [Integration Rule - FTC 1]:                                                    \displaystyle A = \frac{2}{3} - \frac{2}{7}
  5. [Area] Subtract:                                                                                               \displaystyle A = \frac{8}{21}

Topic: AP Calculus AB/BC (Calculus I/II)  

Unit: Area Under the Curve - Area of a Region (Integration)  

Book: College Calculus 10e

6 0
3 years ago
Other questions:
  • Which is the graph of linear inequality 2x-3y&lt;12 ?
    14·2 answers
  • 12 Months (upfront) was $773
    13·2 answers
  • Combine Like Terms. 7x - 5x
    13·2 answers
  • A group of 20 adults and x students will visit the Museum of Science and History. Tickets for adults cost \$14 each , and ticket
    5·1 answer
  • The average number of claims per hour made to an insurance company is 3.
    8·1 answer
  • Anna painted 1/6 of a wall, Eric painted 1/5 of the wall, and Meadow painted 1/4 of the wall. There are now 3,910 square feet le
    5·2 answers
  • Sergei runs a bakery
    11·2 answers
  • Find a, d, e on a triangle.
    12·2 answers
  • Please help, will give extra points
    11·1 answer
  • Turn 311/34 to a mixed number
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!