1. 22
2.34
3. first one
hope this helps
To put an equation into (x+c)^2, we need to see if the trinomial is a perfect square.
General form of a trinomial: ax^2+bx+c
If c is a perfect square, for example (1)^2=1, 2^2=4, that's a good indicator that it's a perfect square trinomial.
Here, it is, because 1 is a perfect square.
To ensure that it's a perfect square trinomial, let's look at b, which in this case is 2.
It has to be double what c is.
2 is the double of 1, therefore this is a perfect square trinomial.
Knowing this, we can easily put it into the form (x+c)^2.
And the answer is: (x+1)^2.
To do it the long way:
x^2+2x+1
Find 2 numbers that add to 2 and multiply to 1.
They are both 1.
x^2+x+x+1
x(x+1)+1(x+1)
Gather like terms
(x+1)(x+1)
or (x+1)^2.
The slope cannot be found when only one co-ordinate is given.
One may assume the line is vertical or horizontal
This answer is ambiguous
Answer:
A. divide both sides by 3
Step-by-step explanation:
3p < 14
We want to isolate p, so we divide both sides by 3
3p/3 < 14/3
p <14/3
The value of the expression in the form a(x+b)^2 is 1.5(x+2)^2 - 4
<h3>Vertex Form of a quadratic expression</h3>
Given the quadratic expressions
1.5x^2+6x+......
1.5(x^2 + 4x)
Using the completing the square method
The coefficient of x = 4
Half of the coefficient = 4/2 = 2
The square of the result = 2^2 = 4
The equation is expressed as:
f(x) = 1.5(x^2+4x+ 4) - 4
f(x) = 1.5(x+2)^2 - 4
Hence the value of the expression in the form a(x+b)^2 is 1.5(x+2)^2 - 4
Learn more on completing the square method here: brainly.com/question/1596209