1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
leonid [27]
2 years ago
7

Which of the following is equivalent to the complex number i^17

Mathematics
1 answer:
Anton [14]2 years ago
4 0

Answer:

Step-by-step explanation:

It’s a repeating pattern.

i² = -1

i³ =(i²)i = (-1)i = -i

i⁴ = i³i = -i² = 1

i⁵ = (i⁴)i = (1)i = i

i⁶ = i⁵i = i² = -1

...

i¹⁷ = i

You might be interested in
Fundamental Counting Principle (L1)
Kamila [148]
Hope you are having a great day!

STEP BY STEP: a+b(x)=6
4 0
3 years ago
Unit 3 parallel and perpendicular lines homework 4 parallel line proofs
Alex17521 [72]

Answer:

1) c ║ d by consecutive interior angles theorem

2) m∠3 + m∠6 = 180° by transitive property

3) ∠2 ≅ ∠5 by definition of congruency

4) t ║ v                                    {}                   Corresponding angle theorem

5) ∠14 and ∠11  are supplementary         {}  Definition of supplementary angles

6) ∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem

Step-by-step explanation:

1) Statement                                {}                                     Reason

m∠4 + m∠7 = 180°                                 {}   Given

m∠4 ≅ m∠6                                {}              Vertically opposite angles

m∠4 = m∠6                               {}                Definition of congruency

m∠6 + m∠7 = 180°                                {}    Transitive property

m∠6 and m∠7 are supplementary     {}     Definition of supplementary angles

∴ c ║ d                               {}                       Consecutive interior angles theorem

2) Statement                                {}                                     Reason

m∠3 = m∠8                                 {}           Given

m∠8 + m∠6 = 180°                {}                 Sum of angles on a straight line

∴ m∠3 + m∠6 = 180°               {}               Transitive property

3) Statement                                {}                                     Reason

p ║ q                                 {}                    Given

∠1 ≅ ∠5                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠2 ≅ ∠1                               {}                  Alternate interior angles theorem

∠2 = ∠1                               {}                   Definition of congruency

∠2 = ∠5                                  {}               Transitive property

∠2 ≅ ∠5                                  {}              Definition of congruency.

4) Statement                                {}                                     Reason

∠1 ≅ ∠5                                  {}                Given

∠3 ≅ ∠4                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠3 = ∠4                               {}                  Definition of congruency

∠5 ≅ ∠4                               {}                 Vertically opposite angles

∠5 = ∠4                               {}                  Definition of congruency

∠5 = ∠3                                  {}               Transitive property

∠1 = ∠3                                  {}                Transitive property

∠1 ≅ ∠3                                  {}                Definition of congruency.

t ║ v                                    {}                   Corresponding angle theorem

5) Statement                                {}                                     Reason

∠5 ≅ ∠16                                  {}              Given

∠2 ≅ ∠4                               {}                  Given

∠5 = ∠16                               {}                  Definition of congruency

∠2 = ∠4                               {}                   Definition of congruency

EF ║ GH                               {}                  Corresponding angle theorem

∠14 ≅ ∠16                               {}                Corresponding angles

∠14 = ∠16                               {}                 Definition of congruency

∠5 = ∠14                                  {}               Transitive property

∠5 + ∠11 = 180°                {}                       Sum of angles on a straight line

∠14 + ∠11 = 180°                                {}      Transitive property

∠14 and ∠11  are supplementary         {}  Definition of supplementary angles  

6) Statement                                {}                                     Reason

l ║ m                                 {}                      Given

∠4 ≅ ∠7                               {}                  Given

∠4 = ∠7                               {}                   Definition of congruency

∠2 ≅ ∠7                               {}                  Alternate angles

∠2 = ∠7                               {}                   Definition of congruency

∠2 = ∠4                                  {}               Transitive property

∠2 ≅ ∠4                               {}                  Definition of congruency

∠2 and ∠4 are corresponding angles   {} Definition

DA ║ EB                               {}                  Corresponding angle theorem

∠8 and ∠9  are consecutive  interior angles    {} Definition

∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem.

6 0
3 years ago
How to find domain and range on a graph
mamaluj [8]

Answer:

Please Find the answer below

Step-by-step explanation:

Domain : It these to values of x , for which we have some value of y on the graph. Hence in order to determine the Domain from the graph, we have to determine , if there is any value / values for which we do not have any y coordinate. If there are some, then we delete them from the set of Real numbers and that would be our Domain.

Range :  It these to values of y , which are as mapped to some value of x in the graph. Hence in order to determine the Range  from the graph, we have to determine , if there is any value / values on y axis for which we do not have any x coordinate mapped to it. If there are some, then we delete them from the set of Real numbers and that would be our Range .

4 0
3 years ago
Which of the following choices is an example of gathering evidence?
Anika [276]

Answer:

OA Taking Measurements

8 0
1 year ago
the number of the students of a school was 640 last year and it is 800 by how many percent is the number increased​
yuradex [85]

Answer:

The number of students would have increased by 25%.

Step-by-step explanation:

8 0
2 years ago
Read 2 more answers
Other questions:
  • If lines m and n are parallel in the illustration below. Which of the following must be true about
    14·2 answers
  • A pair of shoes costs three times as much as a scarf. The total cost of 1 pair of shoes and 1 scarf is $32. If s represents the
    14·1 answer
  • What is the slope of the line passing through the points (0, 4) and (-8, -1)?
    10·2 answers
  • Eight two-person teams are participating in a three-legged race. Find the number of orders in which all 8 teams can finish the r
    15·1 answer
  • Find the ratio of cans of fruit to the total number of food items collected.
    14·1 answer
  • A number is K units to the left of 0 on the number line. Describe the location of it's opposites
    10·1 answer
  • You spin the spinner shown below once. Each sector shown has an equal area.
    8·1 answer
  • What is the slope-intercept of 5x-y=-36
    10·1 answer
  • I need help on my mat!!!!!
    5·1 answer
  • Help me please with my geometry
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!