Answer:
Falso.
Step-by-step explanation:
Acá tenemos la proposición:
"En una multiplicación, si un factor es un número natural y el otro es un número entero negativo, el producto es siempre menor que cada uno de los factores."
Primero tratemos de demostrar que esto es falso, para ello debemos encontrar un solo ejemplo en el que la proposición sea falsa.
Elijamos al número 1 como el número natural,
Elijamos -10 como el número entero negativo.
El producto es:
1*-10 = -10
Ahora veamos si el producto es menor que cada uno de los factores.
-10 < 1 ?
Si, -10 es menor que 1.
Ahora veamos con el otro factor:
-10 < - 10?
No, un número no puede ser menor que si mismo.
Entonces el producto no siempre es menor que cada uno de los factores.
Entonces la proposición es falsa.
Answer: D
I just took the test and the answer is D.
If the 0 is in the numerator, the value is 0
if the 0 is in the denominator, the value is undefined
so 0/8 = 0
and 3/0 = undefined
Answer:
You can use the ASA Postulate to prove the Angle-Angle-Side Congruence Theorem. A flow proof is shown below. If two angles and a nonincluded side of one triangle are congruent to two angles and the corresponding nonincluded side of another triangle, then the triangles are congruent.
Step-by-step explanation:
Hope it helps! Correct me if I am wrong!
I'm sure about my answer!
If you dont mind can you please mark me as brainlest?
Its ok if you don't want to!
Answer:
k = 7
Step-by-step explanation:
The given figures are lines f(x) and g(x)
For the line f(x), we have the y-intercept at (0, -3) and slope = (-1 - (-3))/(-3 - 0) = -2/3
Therefore, line f(x) = y - (-3) = -2/3·(x - 0) which gives f(x) = y = -3 - 2·x/3
For the line g(x), the y-intercept is (0, 4), and the slope is (4 - 2)/(0 - 3) = -2/3
The equation of the line g(x) is therefore, g(x) = y - 4 = -2/3·x, which simplifies to the slope and intercept form as g(x) = y = 4 - 2/3·x
Therefore, given that the transformation of f(x) to g(x) is given as g(x) = f(x) + k, we have;
k = g(x) - f(x) = 4 - 2/3·x - (-3 - 2·x/3) = 4 - 2/3·x + 3 + 2·x/3 = 7
∴ k = 7