Answer:
What is the y-intercept of the quadratic function
f(x) = (x - 6)(x - 2)?What is the y-intercept of the quadratic function
f(x) = (x - 6)(x - 2)?What is the y-intercept of the quadratic function
f(x) = (x - 6)(x - 2)?What is the y-intercept of the quadratic function
f(x) = (x - 6)(x - 2)?
(0,12)
(0,12)
(0,12)
(0,12)
What is the y-intercept of the quadratic function
f(x) = (x - 6)(x - 2)?
(0,12)
Answer:
a) 81.5%
b) 95%
c) 75%
Step-by-step explanation:
We are given the following information in the question:
Mean, μ = 266 days
Standard Deviation, σ = 15 days
We are given that the distribution of length of human pregnancies is a bell shaped distribution that is a normal distribution.
Formula:

a) P(between 236 and 281 days)

b) a) P(last between 236 and 296)

c) If the data is not normally distributed.
Then, according to Chebyshev's theorem, at least
data lies within k standard deviation of mean.
For k = 2

Atleast 75% of data lies within two standard deviation for a non normal data.
Thus, atleast 75% of pregnancies last between 236 and 296 days approximately.
Answer:
x=8/47
Step-by-step explanation:
8x(40+7)=8+(8*7)
8x(47)=8+56
376x=64
x=64/376
x=8/47
Photo math works and the answer would be on that app!!
Answer:
7052€
Step-by-step explanation:
Si el empresario quiere gana 892€, primero tiene que encontrar el valor total a pagar a los 16 obreros y sumarle a ese valor la ganancia que quiere obtener:
Valor total a pagar a los obreros: 385€*16= 6160€
Valor a cobrar por el trabajo: 6160+892= 7052€
De acuerdo con esto, si el empresario quiere ganar 892 €, debe cobrar 7052€ por el trabajo.