Answer:
75% confidence interval is 91.8±16.66. That is between 75.1 and 108.5 pounds.
Step-by-step explanation:
The question is missing. It is as follows:
Adult wild mountain lions (18 months or older) captured and released for the first time in the San Andres Mountains had the following weights (pounds): 69 104 125 129 60 64
Assume that the population of x values has an approximately normal distribution.
Find a 75% confidence interval for the population average weight μ of all adult mountain lions in the specified region. (Round your answers to one decimal place.)
75% Confidence Interval can be calculated using M±ME where
- M is the sample mean weight of the wild mountain lions (
)
- ME is the margin of error of the mean
And margin of error (ME) of the mean can be calculated using the formula
ME=
where
- t is the corresponding statistic in the 75% confidence level and 5 degrees of freedom (1.30)
- s is the standard deviation of the sample(31.4)
Thus, ME=
≈16.66
Then 75% confidence interval is 91.8±16.66. That is between 75.1 and 108.5
Answer:
Step-by-step explanation:
It seems you got the right answer, but didn’t do the problem correctly.
The square root of 2 times the square root of 2 is 2. And then 6 times the square root of two minus the product of 6 and the square root of two equals zero. And then obviously 6 and -6 equals -36. So 2+-36 is -34
Answer:
91
Step-by-step explanation:
155-16s²
155- 16x2²
155- 16x4
155-64
91
80,000going up by 10% you just add the 10% on