Answer: 21
Step-by-step explanation: 84/4 = 21
1) We calculate the volume of a metal bar (without the hole).
volume=area of hexagon x length
area of hexagon=(3√3 Side²)/2=(3√3(60 cm)²) / 2=9353.07 cm²
9353.07 cm²=9353.07 cm²(1 m² / 10000 cm²)=0.935 m²
Volume=(0.935 m²)(2 m)=1.871 m³
2) we calculate the volume of the parallelepiped
Volume of a parallelepiped= area of the section x length
area of the section=side²=(40 cm)²=1600 cm²
1600 cm²=(1600 cm²)(1 m² / 10000 cm²=0.16 m²
Volume of a parallelepiped=(0.16 m²)(2 m)=0.32 m³
3) we calculate the volume of a metal hollow bar:
volume of a metal hollow bar=volume of a metal bar - volume of a parallelepiped
Volume of a metal hollow bar=1.871 m³ - 0.32 m³=1.551 m³
4) we calculate the mass of the metal bar
density=mass/ volume ⇒ mass=density *volume
Data:
density=8.10³ kg/m³
volume=1.551 m³
mass=(8x10³ Kg/m³ )12. * (1.551 m³)=12.408x10³ Kg
answer: The mas of the metal bar is 12.408x10³ kg or 12408 kg
Answer: cos(Θ) = (√15) / 4
Explanation:
The question states:
1) sin(Θ) = 1/4
2) 0 < Θ < π / 2
3) find cos(Θ)
This is how you solve it.
1) Use the fundamental identity (in this part I use α instead of Θ, just for facility of wirting the symbols, but they mean the same for the case).

2) From which you can find:

3) Replace sin(α) with 1/4
=>

=>

4) Given that the angle is in the first quadrant, you know that cosine is positive and the final answer is:
cos(Θ) =

.
And that is the answer.
Answer:
pano ba yan mag isip ka may utak ka tanga
The volume of the figure is since you have to do width times heigh so 25 times 8 which would be 200 as your answer.