I think the correct answer among the choices listed above is option C. Magnetic levitation has been used to innovate transportation. This innovation is commonly known as maglev. It is a new transportation technology where noncontacting vehicles travel above a guideway by magnetic fields.
Answer:
x₂=0.44m
Explanation:
First, we calculate the length the spring is stretch when the first block is hung from it:

Now, since the stretched spring is in equilibrium, we have that the spring restoring force must be equal to the weight of the block:

Solving for the spring constant k, we get:

Next, we use the same relationship, but for the second block, to find the value of the stretched length:

Finally, we sum this to the unstretched length to obtain the length of the spring:

In words, the length of the spring when the second block is hung from it, is 0.44m.
Answer:
The current in second wire is 5.0 A.
(B) is correct option.
Explanation:
Given that,
Current in first wire = 3.7 A
Distance = 8.0 cm
We need to calculate the magnetic field due to the current carrying wire
Using formula of magnetic field

Where, I = current
r = distance
Put the value into the formula
For first wire
...(I)
For second wire,
The distance is 8-3.7 = 4.3 cm
...(II)
The magnetic field in both the wires,
From equation (I) and (II)



Hence, The current in second wire is 5.0 A.
Answer:
greatest speed=0.99c
least speed=0.283c
Explanation:
To solve this problem, we have to go to frame of center of mass.
Total available energy fo π + and π - mesons will be difference in their rest energy:

=218 Mev
now we have to assume that both meson have same kinetic energy so each will have K=109 Mev from following equation for kinetic energy we have,
K=(γ-1)


note +-=±
To find speed least and greatest speed of meson we would use relativistic velocity addition equations:

After the supernova they either form into a Black Hole, Neutron Star or White Dwarf. Depending