The time interval that is between the first two instants when the element has a position of 0.175 is 0.0683.
<h3>How to solve for the time interval</h3>
We have y = 0.175
y(x, t) = 0.350 sin (1.25x + 99.6t) = 0.175
sin (1.25x + 99.6t) = 0.175
sin (1.25x + 99.6t) = 0.5
99.62 = pi/6
t1 = 5.257 x 10⁻³
99.6t = pi/6 + 2pi
= 0.0683
The time interval that is between the first two instants when the element has a position of 0.175 is 0.0683.
b. we have k = 1.25, w = 99.6t
v = w/k
99.6/1.25 = 79.68
s = vt
= 79.68 * 0.0683
= 5.02
Read more on waves here
brainly.com/question/25699025
#SPJ4
complete question
A transverse wave on a string is described by the wave function y(x, t) = 0.350 sin (1.25x + 99.6t) where x and y are in meters and t is in seconds. Consider the element of the string at x=0. (a) What is the time interval between the first two instants when this element has a position of y= 0.175 m? (b) What distance does the wave travel during the time interval found in part (a)?
There is a threshold frequency for each metal, and only light of a frequency higher than this threshold causes electrons to be emitted from the metal surface.
All the planets revolve around the sun counter clockwise and rotate on hteir axis counterclockwise except venus and neptune.
Higher resolution cannot be achieved with a light microscope because wavelength of light is larger that wavelength of electrons.
<h3>What is light microscope?</h3>
Light microscope is defined as the type of microscope that makes use of visible light to magnify objects into images that can be observed.
The wavelength of light is larger than that of the electrons, therefore, higher resolution cannot be achieved with a light microscope.
Learn more about microscope here:
brainly.com/question/15744335
#SPJ1
Answer: Option (A) and (D) are the correct statements.
Explanation:
Potential energy is defined as the energy obtained by an object due to its position. Whereas kinetic energy is defined as the energy obtained by an object due to the motion of its molecules.
When there will be only one phase present then addition or removal of energy will lead to change in kinetic energy of the substance but no change in potential energy will take place.
Whereas if change in phase is occurring then adding or removing any energy will lead to change in potential energy of the substance while kinetic energy will remain the same.
Thus, we can conclude that correct statements are as follows.
- While only one phase is present, adding or removing energy changes PE but not KE.
- During a phase change, adding or removing energy changes PE but not KE.