Answer:
So the volume will be 2.33 L
Explanation:
The reaction for the combustion is:
2 C₄H₁₀ (g) + 13 O₂ (g) → 8 CO₂ (g) + 10 H₂O (l)
mass of butane to moles (mass / molar mass)
1.4 g / 58 g/mol
= 0.024 moles
2 moles of butane can produce 8 moles of carbon dioxide
0.024 moles of butane must produce (0.024 × 8) /2
= 0.096 moles of CO₂
Now we apply the Ideal Gases Law to find out the volume formed.
P . V = n . R . T
p = 1atm
n = 0.096 mol
R = 0.082 L.atm/mol.K
T = 273 + 23 = 296K
V = ?
1atm × V = 0.096 mol × 0.082 L.atm/mol.K × 296K
V = 0.096 mol × 0.082 L.atm/mol.K × 296K / 1atm
= 2.33 L
So the volume will be 2.33 L
Transverse waves have motion perpendicular to velocity, while longitudinal waves have motion parallel to velocity.
Explanation:
The correct option of all is that transverse waves have motion perpendicular to velocity while longitudinal waves have motion parallel to velocity.
A wave is a disturbance that transmits energy from one point to another. There several types of waves like sound, electromagnetic , ocean waves etc.
- Waves can be classified as either longitudinal or transverse waves based on the direction through which they are propagated.
- Longitudinal waves are waves propagated parallel to the source of velocity.
- An example is sound waves and seismic p-waves.
- They have series of rarefaction and compression along their path.
- Transverse waves are propagated perpendicular to their source.
- An example is electromagnetic waves in which electrical and magnetic fields vibrates perpendicularly.
learn more:
Electromagnetic radiation brainly.com/question/6818046
#learnwithBrainly
Chromium , silver, zinc...
When it passes from one medium
Answer:
- last option: none of<u> the above.</u>
Explanation:
Describing a solution as<em> concentrated</em> tells that the solution has a relative large concentration, but it is a qualitative description, not a quantitative one, so this does not tell really how concentrated the solution is. This is, the term concentrated is a kind of vague; it just lets you know that the solution is not very diluted, but, as said initially, that there is a relative large amount (concentration) of solute.
One conclusion, of course, is that <u>the solute is soluble</u>: else the solution were not concentrated.
On the other hand, the terms saturated and <em>supersaturated</em> to define a solution are specific.
A saturated solution has all the solute that certain amount of solvent can contain, at a given temperature. A <u>supersaturated solution has more solute dissolved than the saturated solution</u> at the same temperature; superstaturation is a very unstable condition.
From above, there is no way that you can conclude whether a solution is supersaturated or not from the statement that a solution is concentrated, so the answer is<u> none of the above</u>.