Answer:
pH = 2.46
Explanation:
Hello there!
In this case, since this neutralization reaction may be assumed to occur in a 1:1 mole ratio between the base and the strong acid, it is possible to write the following moles and volume-concentrations relationship for the equivalence point:

Whereas the moles of the salt are computed as shown below:

So we can divide those moles by the total volume (0.021L+0.0066L=0.0276L) to obtain the concentration of the final salt:
![[salt]=0.01428mol/0.0276L=0.517M](https://tex.z-dn.net/?f=%5Bsalt%5D%3D0.01428mol%2F0.0276L%3D0.517M)
Now, we need to keep in mind that this is an acidic salt since the base is weak and the acid strong, so the determinant ionization is:

Whose equilibrium expression is:
![Ka=\frac{[C_6H_5NH_2][H_3O^+]}{C_6H_5NH_3^+}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BC_6H_5NH_2%5D%5BH_3O%5E%2B%5D%7D%7BC_6H_5NH_3%5E%2B%7D)
Now, since the Kb of C6H5NH2 is 4.3 x 10^-10, its Ka is 2.326x10^-5 (Kw/Kb), we can also write:

Whereas x is:

Which also equals the concentration of hydrogen ions; therefore, the pH at the equivalence point is:

Regards!
Answer:
pOH= 14.248
[H+]=1.77 M
[OH-]=5.65 x10^-15M
Explanation:
pH+pOH= 14
pOH= 14-pH
pOH=14-(-0.248)
pOH= 14.248
[H+]=10^-pH= 10^-(-0.248)=1.77 M
[OH-]=10^-pOH= 10^-14.248=5.65 x10^-15M
Answer:
P₂ = 28.5 torr
Explanation:
Given data:
Initial pressure = 38 torr
Initial volume = 500 L
Final volume = 677 L
Final pressure = ?
Solution:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = Initial volume
P₂ = Final pressure
V₂ = Final volume
Now we will put the vales in formula.
P₁V₁ = P₂V₂
P₂ = P₁V₁ /V₂
P₂ = 38 torr × 500 L / 667 L
P₂ = 19000 torr. L / 667 L
P₂ = 28.5 torr
Answer:
2 elements magnesium(Mg) and chlorine (Cl)
Nitrogen is the chemical element with the symbol N and atomic number 7. ... At standard temperature and pressure, a colourless and odorless atomic gas with the formula N. nitrogen forms about 78% of Earth's atmosphere.