Larger PyramidHeight 24 Volume 648
Pyramid Volume = (Area of the Base * Height) ÷ 3648 = Base Area * 24 / 3Base Area = 648 * 3 / 24Base Area = 648 / 8Base Area = 81Base Length = 9
a) The Scale Factor between the Small & Large PyramidLength - 3LATERAL Area - 9Volume - 27
Slant Height^2 = 4.5^2 + 24^2Slant Height^2 =
<span>
<span>
596.25
</span>
</span>
<span><span>Slant Height^2 = 24.4182308941
</span>
</span>
b)
Large Pyramid Area = (½ * Perimeter of Base * Slant Height) + Base AreaLarge Pyramid Area = (.5 * 36 * <span>24.4182308941) + 81
</span>Large Pyramid Area = 439.5281560938 + 81
Large Pyramid TOTAL Area =
<span>
<span>
520.5281560938
</span>
</span>
<span>Large Pyramid LATERAL Area =<span> 439.5281560938
</span>
</span>
**********************************************************************************c)
Smaller PyramidHeight 8Surface Area = 124
This pyramid has dimensions that are one third of the larger pyramid.Therefore, it has a base length of 3.Base Area = 9.
Its base perimeter would be 12.
Small Pyramid Volume = (Area of the Base * Height) ÷ 3Small Pyramid Volume = ( 9 * 8 ) / 3Small Pyramid Volume = 72 / 3
c) Small Pyramid Volume =24 cubic meters
d) Ratio of larger pyramid volume to smaller pyramid volume648 / 24 = 27The reason? Volume is a 3 dimensional quantity. The Larger pyramid is 3 times larger in terms of the base measurement.9 meters vs 3 meters - a factor of 3When we compare volumes, we have to cube this factor.3^3 = 27
Source : http://www.1728.org/volpyrmd.htm
You are doing the distributive property.
68.5j+76.54
Jim has 27.5 minutes left to get to the airport.
I am pretty sure your correct answer is 3380.
Step-by-step explanation:
The period of f(x) is π.
To calculate the period using the formula derived from the basic sine and cosine equations. The period for function y = A sin (B a – c) and y = A cos ( B a – c ) is equal to 2πB radians. The reciprocal of the period of a function is equal to its frequency.