Answer: 0.6065
Step-by-step explanation:
Given : The machine's output is normally distributed with


Let x be the random variable that represents the output of machine .
z-score : 
For x= 21 ounces

For x= 28 ounces

Using the standard normal distribution table , we have
The p-value : 

Hence, the probability of filling a cup between 21 and 28 ounces= 0.6065
That is right. Angle 2 to side 2 to angle 1 for both of them.The second triangle is just the first upside down.
Answer:
See explanation

Step-by-step explanation:
1. Make sure that the trinomial is written in the correct order - the trinomial must be written in descending order from highest power to lowest power. In you case, the trinomial must be written as

2. Decide if the three terms have anything in common, called the greatest common factor or GCF. If so, factor out the GCF. Do not forget to include the GCF as part of your final answer.
In your case, coefficients 2, 5 and 3 do not have common factors, so go to the next step.
3. Multiply the leading coefficient and the constant, that is multiply the first and last numbers together:

4. List all of the factors from step 3 and decide which combination of numbers will combine to get the number next to x:

5. After choosing the correct pair of numbers, you must give each number a sign so that when they are combined they will equal the number next to x and also multiply to equal the number found in Step 3:

6. Rewrite the original problem with four terms by splitting the middle term into the two numbers chosen in step 5:

7. Now that the problem is written with four terms, you can factor by grouping:

Answer:
The probability is 7/36
Step-by-step explanation:
In this question, we are tasked with calculating the probability that when we roll two fair dice, the sum of two numbers on both dies equal to 5.
Before we go on answering the question, we need to know the number of elements in our sample space. What this means is that we need to know the number of results we can have. The total number of results we can have is 6 * 6 = 36
Now, the next thing to know is how many of our results would yield a multiple of 5 each. Now let’s look at the attachment for the tabular representation we have.
Now, looking at our table, we can see that we have 7 circled results where we have a possibility of a multiple of 5.
The probability is thus the number of these additions divided by the total number of outputs= 7/36