Answer:
??
Step-by-step explanation:

<u>We </u><u>have</u><u>, </u>
- Line segment AB
- The coordinates of the midpoint of line segment AB is ( -8 , 8 )
- Coordinates of one of the end point of the line segment is (-2,20)
Let the coordinates of the end point of the line segment AB be ( x1 , y1 ) and (x2 , y2)
<u>Also</u><u>, </u>
Let the coordinates of midpoint of the line segment AB be ( x, y)
<u>We </u><u>know </u><u>that</u><u>, </u>
For finding the midpoints of line segment we use formula :-

<u>According </u><u>to </u><u>the </u><u>question</u><u>, </u>
- The coordinates of midpoint and one of the end point of line segment AB are ( -8,8) and (-2,-20) .
<u>For </u><u>x </u><u>coordinates </u><u>:</u><u>-</u>





<h3><u>Now</u><u>, </u></h3>
<u>For </u><u>y </u><u>coordinates </u><u>:</u><u>-</u>





Thus, The coordinates of another end points of line segment AB is ( -14 , 36)
Hence, Option A is correct answer
Given: C(N) = 15,000 + 8000N <span>
In the above equation simply substitute:
N(t) = 100t - 5t^2
for N
</span>
<span>Therefore:
C(t) = 15,000 + 8000{ 100t-5t^2 }
C(t) =15,000 + 800,000t - 40,000t^2.</span>
at t = 5
C(5) = 15,000 + 800,000*5
- 40,000*(5)^2
<span>C(5) = 3,015,000</span>