Using translation concepts, considering the vertices (x,y) of figure p, the following rule is applied to find the vertices of figure r.
(x,y) -> (x + 4, y).
<h3>What is a translation?</h3>
A translation is represented by a change in the function graph, according to operations such as multiplication or sum/subtraction either in it’s definition or in it’s domain. Examples are shift left/right or bottom/up, vertical or horizontal stretching or compression, and reflections over the x-axis or the y-axis.
When a figure is shifted 4 units to the right, <u>4 is added to the x-coordinate</u>, hence, considering the vertices (x,y) of figure p, the following rule is applied to find the vertices of figure r.
(x,y) -> (x + 4, y).
More can be learned about translation concepts at brainly.com/question/28416763
#SPJ1
Basically what you are doing is trying to find the square root of 8. What you need to do is find what would go into the number 8 equally so, you are basically finding the multiples
Check the picture below. So the parabola looks more or less like so.
let's recall that the vertex is half-way between the focus point and the directrix, at "p" units away from both.
Let's notice that the focus point is below the directrix, that means the parabola is vertical, namely the squared variable is the "x", and it also means that it's opening downwards as you see in the picture, namely that "p" is negative, in this case "p" is 1 unit, and thus is -1.
![\bf \textit{parabola vertex form with focus point distance} \\\\ \begin{array}{llll} 4p(x- h)=(y- k)^2 \\\\ \stackrel{\textit{we'll use this one}}{4p(y- k)=(x- h)^2} \end{array} \qquad \begin{array}{llll} vertex\ ( h, k)\\\\ p=\textit{distance from vertex to }\\ \qquad \textit{ focus or directrix} \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \begin{cases} h=-2\\ k=5\\ p=-1 \end{cases}\implies 4(-1)(y-5)=[x-(-2)]^2\implies -4(y-5)=(x+2)^2 \\\\\\ y-5=-\cfrac{1}{4}(x+2)^2\implies y=-\cfrac{1}{4}(x+2)^2+5](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bparabola%20vertex%20form%20with%20focus%20point%20distance%7D%20%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7Bllll%7D%204p%28x-%20h%29%3D%28y-%20k%29%5E2%20%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bwe%27ll%20use%20this%20one%7D%7D%7B4p%28y-%20k%29%3D%28x-%20h%29%5E2%7D%20%5Cend%7Barray%7D%20%5Cqquad%20%5Cbegin%7Barray%7D%7Bllll%7D%20vertex%5C%20%28%20h%2C%20k%29%5C%5C%5C%5C%20p%3D%5Ctextit%7Bdistance%20from%20vertex%20to%20%7D%5C%5C%20%5Cqquad%20%5Ctextit%7B%20focus%20or%20directrix%7D%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Cbegin%7Bcases%7D%20h%3D-2%5C%5C%20k%3D5%5C%5C%20p%3D-1%20%5Cend%7Bcases%7D%5Cimplies%204%28-1%29%28y-5%29%3D%5Bx-%28-2%29%5D%5E2%5Cimplies%20-4%28y-5%29%3D%28x%2B2%29%5E2%20%5C%5C%5C%5C%5C%5C%20y-5%3D-%5Ccfrac%7B1%7D%7B4%7D%28x%2B2%29%5E2%5Cimplies%20y%3D-%5Ccfrac%7B1%7D%7B4%7D%28x%2B2%29%5E2%2B5)
Answer:
Step-by-step explanation:
Como quito el ingles
The answer is 74.5 if you saying 4 divided by 298 then that is the right answer