Answer: 14.95
Step-by-step explanation: Set up the equation. On a piece of paper, write the dividend (number being divided) on the right, under the division symbol, and the divisor (number doing the division) to the left on the outside. ...
Divide the first digit. ...
Divide the first two digits. ...
Enter the first digit of the quotient.
Margin of error is 0.783985593816022
Answer: The range is [3, infinity).
Step-by-step explanation: The "[" means that it is apart of the graph. The ")" means it is not apart of the graph.
The graph's range (which is it's highest lowest to highest y-value), the lowest is 3 on the y axis, and then stems on to infinity. The reason why infinity is not apart of the graph is because it has no end and infinity is not a number.
Step-by-step explanation:
6.) 8p = 8x9 = 72
8.) 4(d+7) = 4(-2+7) = 4(5) = 20
can't read all of 10 to give an answer
<u>Step-by-step explanation:</u>
transform the parent graph of f(x) = ln x into f(x) = - ln (x - 4) by shifting the parent graph 4 units to the right and reflecting over the x-axis
(???, 0): 0 = - ln (x - 4)

0 = ln (x - 4)

1 = x - 4
<u> +4 </u> <u> +4 </u>
5 = x
(5, 0)
(???, 1): 1 = - ln (x - 4)

1 = ln (x - 4)

e = x - 4
<u> +4 </u> <u> +4 </u>
e + 4 = x
6.72 = x
(6.72, 1)
Domain: x - 4 > 0
<u> +4 </u> <u>+4 </u>
x > 4
(4, ∞)
Vertical asymptotes: there are no vertical asymptotes for the parent function and the transformation did not alter that
No vertical asymptotes
*************************************************************************
transform the parent graph of f(x) = 3ˣ into f(x) = - 3ˣ⁺⁵ by shifting the parent graph 5 units to the left and reflecting over the x-axis
Domain: there is no restriction on x so domain is all real number
(-∞, ∞)
Range: there is a horizontal asymptote for the parent graph of y = 0 with range of y > 0. the transformation is a reflection over the x-axis so the horizontal asymptote is the same (y = 0) but the range changed to y < 0.
(-∞, 0)
Y-intercept is when x = 0:
f(x) = - 3ˣ⁺⁵
= - 3⁰⁺⁵
= - 3⁵
= -243
Horizontal Asymptote: y = 0 <em>(explanation above)</em>