Answer:
4 moles of neon
Explanation:
Given data:
Number of moles of neon = ?
Number of atoms of neon = 2.4×10²⁴ atoms
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
1.008 g of hydrogen = 1 mole = 6.022 × 10²³ atoms of hydrogen
For given neon atoms:
1 mol = 6.022 × 10²³ atoms
2.4×10²⁴ atoms × 1 mol / 6.022 × 10²³ atoms
0.4×10¹ mol = 4 mol
Answer:
A. volume
Explanation:
Generally the equation for the ideal gas is mathematically given as
PV=nRT
Where
P=pressure
V=volume
R=gas constant
n=Number of Moles
T=Temperature
Therefore
V=nRT/P
Option A
For more information on this visit
brainly.com/question/17756498
Answer:
531.6g
Explanation:
Total moles of glucose in this case is: 886/180= 4.922 (mole)
For every 1 mole glucose we get 6 mole water
-> Mole of water is: 4.922 * 6= 29.533 (mole)
weight of water is 18. Therefore, total weight of water that we will have from 886g of glucose are: 25.933*18= 531.6g
Answer:
A supersaturated solution
Answer
D
Explanation
<em>the</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>D</em>