Answer is: mass of 1,58 mol of water is 28,44 grams.
n(H₂O) = 1,58 mol.
M(H₂O) = 2 · 2 g/mol + 16 g/mol.
M(H₂O) = 18 g/mol.
m(H₂O) = n(H₂O) · M(H₂O).
m(H₂O) = 1,58 mol · 18 g/mol.
m(H₂O) = 28,44 g.
n - amount of substance.
M - molar mass.
Particle
wave are the words you're looking for to fill in the blanks
Answer is: d) Hg.
Mercury is a chemical element with the symbol Hg and atomic number 80. <span> Mercury is the only metallic element that is liquid at standard conditions for temperature and pressure.
</span>Absolute viscosity of mercury is 0,0015 Pa·s.
The viscosity<span> of a </span>fluid<span> is a measure of its </span>resistance<span> to gradual deformation by </span>shear stress<span> or </span><span>tensile stress</span>
4.10 g C12H22O11 * ( 1 mol / 342.2965 g ) * ( 6.022x10^23 / 1 mol ) = <span>7.2107077x10^21 molecules = 7.21x10^21 molecules
Convert grams to moles using the molar mass ( g/mol ).
Use Avogadro's constant ( 6.022x10^23 ) to get the quantity of molecules from the amount of moles.
Revise answer to have the correct number of significant figures ( the smallest amount of digits in any number in the problem is the amount of significant figures your answer should have ).</span>
Explanation:

The maximum wavelength of light that can cause this reaction is 420 nm.
a) The wavelength given lies in the range of visible light range that is from 400 nano meters to 700 nano meters.
The light with wavelength of 420 nm is found in the range of visible light.
b)The maximum strength of a bond :

where,
E = energy of photon = Energy required to break single molecule of nitrogen dioxide
h = Planck's constant = 
c = speed of light = 
= wavelength = 


Energy required to break 1 mole of nitrogen dioxide molecules:


(1 J = 0.001 kJ )
285.13 is the maximum strength of a bond, in kJ/mol, that can be broken by absorption of a photon of 420-nm light.
c) the photodissociation reaction showing Lewis-dot structures is given in an image attached.