Here you go! There are 0.9307 moles in 123.0 g of the compound. I solved this by using a fence post method. I calculated the number of grams in one mol of (NH4)2 SO4 and got 132.16.
I did this by finding the atomic mass of each element on the periodic table (my work is in the color blue for this step)
After that, i divided the given mass by the mass of one mol of the compound.
The answer is 0.9307 moles!! I hope this helped you! :))
Sugar increases the viscosity of water
hope that helps
The heat/enthalpy of vaporization of water represents the energy input required to convert one mole of water into vapor at a constant temperature. Intermolecular forces including hydrogen bondings of significant strength hold water molecules in place under its liquid state. Whereas the molecules experience almost no intermolecular interactions under the gaseous state- consider the way noble gases molecules interact. It is thus necessary to supply sufficient energy to overcome all intermolecular interactions present in the substance under its liquid state to convert the substance into a gas. The heat of vaporization is thus related to the strength of the intermolecular interactions.
Water molecules contain hydrogen atoms bonded directly to oxygen atoms. Oxygen atoms are highly electronegative and take major control of electrons in hydrogen-oxygen bonds. Hydrogen atoms in water molecules thus experience a strong partial-positive charge and would attract lone pairs of electron on neighboring water molecules. "Hydrogen bonds" refer to the attraction between hydrogen atoms bonded to electronegative elements and lone pairs of electrons. The hydrogen-oxygen bonds in water molecules are so polarized that hydrogen bonds in water are stronger than both dipole-dipole interactions and London Dispersion Forces in most other molecules. It thus take high amounts of energy to separate water molecules sufficiently apart such that they no longer experience intermolecular interactions and behave collectively like a gas. As a result, water has one of the highest heat of vaporization among covalent molecules of similar sizes.
The population would decrease, the more predators there are the more food needed for the species .
Answer:
1. The gas law used: Dalton's law of partial pressure.
2. Pressure of nitrogen = 331 mmHg
Explanation:
From the question given above, the following data were obtained:
Total pressure (Pₜ) = 592 mmHg
Pressure of Oxygen (Pₒ) = 261 mmHg
Pressure of nitrogen (Pₙ) =?
The pressure of nitrogen in the sample can be obtained by using the Dalton's law of partial pressure. This is illustrated below:
Pₜ = Pₒ + Pₙ
592 = 261 + Pₙ
Collect like terms
592 – 261 = Pₙ
331 = Pₙ
Pₙ = 331 mmHg
Therefore, the pressure of nitrogen in the sample is 331 mmHg