1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lyudmila [28]
3 years ago
8

6/100 + 5/100 +80/100 +9/100

Mathematics
2 answers:
Nikitich [7]3 years ago
5 0

Answer:

1

Step-by-step explanation:

80+9=89

89+5=94

94+6=100

And since your denominator is 100, that gives us 1 whole number.

Hope this helps :)

xz_007 [3.2K]3 years ago
4 0

♡ The Question ♡

- 6/100 + 5/100 +80/100 +9/100

*୨୧ ┈┈┈┈┈┈┈┈┈┈┈┈ ୨୧*

♡ The Answer ♡

-  1

*୨୧ ┈┈┈┈┈┈┈┈┈┈┈┈ ୨୧*

♡ The Explanation/Step-By-Step ♡

- 6/100 + 5/100 + 80/100 + 9/100

Apply the fraction rule! --> a/c + b/c = a + b over c

6/100 + 5/100 + 80/100 + 9/100 = 6 + 5 + 80 + 9 over 100

Add the numbers: 6 + 5 + 80 + 9 = 100!

= 100/100 Apply the fraction rule! a/a = 1

a/a = 1 = 100/100 = 1

*୨୧ ┈┈┈┈┈┈┈┈┈┈┈┈ ୨୧*

♡ Tips ♡

- No tips provided!

You might be interested in
Solve for e - 9e+4=−5e+14+13e
kari74 [83]

Answer:

e=1o ajjajajajajkananwnwnwhhshssh

7 0
3 years ago
Complete the flow proof below by filling in the reasons for 1, 2, 3, 4, and 5.
Andrei [34K]

Answer:

did u ever get the answer i need helpppp

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Simplify the given expression 8x^2-8/ x / 8(x^2 + 8)/26x^2 - 31x
notsponge [240]

Answer:

-x • (x2 - 208x + 814)

 ——————————————————————

           26          

Step-by-step explanation:

Step  1  :

           x2 + 8

Simplify   ——————

             26  

Polynomial Roots Calculator :

  Find roots (zeroes) of :       F(x) = x2 + 8

Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  8.

The factor(s) are:

of the Leading Coefficient :  1

of the Trailing Constant :  1 ,2 ,4 ,8

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        9.00      

     -2       1        -2.00        12.00      

     -4       1        -4.00        24.00      

     -8       1        -8.00        72.00      

     1       1        1.00        9.00      

     2       1        2.00        12.00      

     4       1        4.00        24.00      

     8       1        8.00        72.00      

Polynomial Roots Calculator found no rational roots

Equation at the end of step  1  :

             8     (x2+8)

 ((8•(x2))-((— ÷ 8•——————)•x2))-31x

             x       26  

:

           8

Simplify   —

           x

Equation at the end of step  2  :

             8     (x2+8)

 ((8•(x2))-((— ÷ 8•——————)•x2))-31x

             x       26  

        8      

Divide  —  by  8

        x      

             1 (x2+8)

 ((8•(x2))-((—•——————)•x2))-31x

             x   26  

Equation at the end of step  4  :

                 (x2 + 8)            

 ((8 • (x2)) -  (———————— • x2)) -  31x

                   26x                

Dividing exponential expressions :

 x2 divided by x1 = x(2 - 1) = x1 = x

Equation at the end of step  5  :

                x • (x2 + 8)      

 ((8 • (x2)) -  ————————————) -  31x

                     26          

Equation at the end of step  6  :

          x • (x2 + 8)      

 (23x2 -  ————————————) -  31x

               26          

Rewriting the whole as an Equivalent Fraction :

  Subtracting a fraction from a whole

Rewrite the whole as a fraction using  26  as the denominator :

            23x2     23x2 • 26

    23x2 =  ————  =  —————————

             1          26    

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

    Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

23x2 • 26 - (x • (x2+8))      -x3 + 208x2 - 8x

————————————————————————  =  ————————————————

           26                       26        

Equation at the end of step  7  :

 (-x3 + 208x2 - 8x)    

 —————————————————— -  31x

         26            

Rewriting the whole as an Equivalent Fraction :

Subtracting a whole from a fraction

Rewrite the whole as a fraction using  26  as the denominator :

          31x     31x • 26

   31x =  ———  =  ————————

           1         26    

Pulling out like terms :

   Pull out like factors :

  -x3 + 208x2 - 8x  =   -x • (x2 - 208x + 8)  

Trying to factor by splitting the middle term

     Factoring  x2 - 208x + 8  

The first term is,  x2  its coefficient is  1 .

The middle term is,  -208x  its coefficient is  -208 .

The last term, "the constant", is  +8  

Multiply the coefficient of the first term by the constant   1 • 8 = 8  

Find two factors of  8  whose sum equals the coefficient of the middle term, which is   -208 .

     -8    +    -1    =    -9  

     -4    +    -2    =    -6  

     -2    +    -4    =    -6  

     -1    +    -8    =    -9  

     1    +    8    =    9  

     2    +    4    =    6  

     4    +    2    =    6  

     8    +    1    =    9  

Adding fractions that have a common denominator :       Adding up the two equivalent fractions

-x • (x2-208x+8) - (31x • 26)     -x3 + 208x2 - 814x

—————————————————————————————  =  ——————————————————

             26                           26        

Pulling out like terms :

10.1     Pull out like factors :

  -x3 + 208x2 - 814x  =   -x • (x2 - 208x + 814)  

Trying to factor by splitting the middle term

10.2     Factoring  x2 - 208x + 814  

The first term is,  x2  its coefficient is  1 .

The middle term is,  -208x  its coefficient is  -208 .

The last term, "the constant", is  +814  

Multiply the coefficient of the first term by the constant   1 • 814 = 814  

Find two factors of  814  whose sum equals the coefficient of the middle term, which is   -208 .

     -814    +    -1    =    -815  

     -407    +    -2    =    -409  

     -74    +    -11    =    -85  

     -37    +    -22    =    -59  

     -22    +    -37    =    -59  

     -11    +    -74    =    -85  

     -2    +    -407    =    -409  

     -1    +    -814    =    -815  

     1    +    814    =    815  

     2    +    407    =    409  

     11    +    74    =    85  

     22    +    37    =    59  

     37    +    22    =    59  

     74    +    11    =    85  

     407    +    2    =    409  

     814    +    1    =    815  

5 0
3 years ago
Please help me I am having a hard time with this activity
zysi [14]

Answer:

Step-by-step explanation:

b.

\frac{a^2+6a+9}{a^2-9} *\frac{3a-9}{a+3} \\=\frac{a^2+2*a*3+3^2}{a^2-3^2} *\frac{3(a-3)}{a+3} \\=\frac{(a+3)^2}{(a+3)(a-3)} *\frac{3(a-3)}{a+3} \\=\frac{3(a+3)^2}{(a+3)^2} \\=3

d.

\frac{3x^2-6x}{3x+1} *\frac{x+3x^2}{x^2-4x+4} \\=\frac{3x(x-2)}{3x+1} *\frac{x(1+3x)}{x^2-2x-2x+4} \\=\frac{3x(x-2)}{3x+1} *\frac{x(1+3x)}{x(x-2)-2(x-2)} \\=\frac{3x(x-2)}{3x+1} *\frac{x(1+3x)}{(x-2)(x-2) } \\=\frac{3x^2}{x-2)}

e.

\frac{2x^2-10x+12}{x^2-4} *\frac{2+x}{3-x} \\=\frac{2[x^2-5x+6]}{x^2-2^2} *\frac{2+x}{-(-3+x)} \\=\frac{2[x^2-2x-3x+6]}{(x+2)(x-2)} *\frac{x+2}{-(x-3)} \\=\frac{2[x(x-2)-3(x-2)]}{(x+2)(x-2)} *\frac{x+2}{-(x-3)} \\=\frac{2(x-2)(x-3)}{(x+2)(x-2)} *\frac{x+2}{-(x-3)} \\=\frac{2}{-1} \\=-2

k.

\frac{6x^2-11x-10}{6x^2-5x-6} *\frac{6-4x}{25-20x+4x^2} \\=\frac{6x^2-15x+4x-10}{6x^2-9x+4x-6} *\frac{-4x+6}{4x^2-10x-10x+25} \\=\frac{3x(2x-5)+2(2x-5)}{3x(2x-3)+2(2x-3) } *\frac{-2(2x-3)}{2x(2x-5)-5(2x-5)} \\=\frac{(2x-5)(3x+2)}{(2x-3)(3x+2)} *\frac{-2(2x-3)}{(2x-5)(2x-5)} \\=\frac{-2}{2x-5}

7 0
3 years ago
Tom has 120 meters of fencing. He will use it to form three sides of a rectangular garden. The fourth side will be along a house
mezya [45]

Answer:

a) Function A(x) =  (60*x - 1/2*x²)

b)Side length     x = 60 m      the other side   y = 30 m

c) A (max)  = 1800 m²

Step-by-step explanation:

Area of rectangular garden with length  " x " and wide "y"

A = x*y        

Perimeter of rectangular area ( only three sides 2*y and 1*x)

P(r)  = 2*y + x

P(r) = 120 = 2*y + x

y = ( 120 - x ) /2

Area of the garden as function of x is

A(x) = [( 120 - x ) /2]*x          ⇒     A(x) = (60*x - 1/2*x²)

Taking derivatives on both sides of the equation:

A´(x) = 60 - x

A´(x)  = 0            60  -  x  = 0

x = 60 m

Then

y = ( 120  -  x ) / 2                ⇒   y = (120 - 60 )/2

y = 30 m

A(max) = 30 * 60

A(max) = 1800 m²

8 0
4 years ago
Other questions:
  • PLEASE HELP QUICK
    5·1 answer
  • One bell rings at an interval of every 10 minutes and a second bell rings at an interval of every 12 minutes how many minutes mu
    7·1 answer
  • Daily low temperatures in Columbus, OH in January 2014 were approximately normally distributed with a mean of 15.45 and a standa
    9·1 answer
  • I can't quite figure out what ( 7- 4n ) x 6 is with distributive property.
    15·1 answer
  • Find inverse of f(x)=(x+4)^2
    13·2 answers
  • How do I solve for y=160x+2=y=280x-3?
    7·1 answer
  • SURFACE OF AREA OF PRISMS (please help)
    10·1 answer
  • A quadrilateral has vertices L(5,0), M(5, -3), N(-4, -3) and O(-4, 0).
    7·1 answer
  • Let f(x)=4x^2+5 The function g(x) is f(x) translated up for units entered the equation of g(x) in the box
    13·1 answer
  • Using traditional methods, it takes 103 hours to receive a basic driving license. A new license training method using Computer A
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!