7273
......................
Answer:
The LCM of these numbers is 45
Step-by-step explanation:
To find the lcm, you must list the multiplies of all of the numbers and find the least common number.
Remember pemdas
simpliify pathentsees, exponents then multiply divide add subtract
some exponential laws
![(xyz)^m=[(x)^m][(y)^m][(z)^m]](https://tex.z-dn.net/?f=%28xyz%29%5Em%3D%5B%28x%29%5Em%5D%5B%28y%29%5Em%5D%5B%28z%29%5Em%5D)


we have
(-5m^2q)^2(-3m^3q)
do each seperately
(-5m^2q)^2=
[(-5)^2][(m^2)^2][(q)^2]=
[25][m^4][q^2]=
25m^4q^2
second part
(-3m^3q)^3=
[(-3)^3][(m^3)^3][(q)^3]=
[-27][m^9][q^3]=
-27m^9q^3
so we multiply them together
(25m^4q^2)(-27m^9q^3)=
(25)(m^4)(q^2)(-27)(m^9)(q^3)=
(25)(-27)(m^4)(m^9)(q^2)(q^3)=
(-675)(m^13)(q^5)=
-675m^13q^5
answer is first one
The answer is 0.35.
20.65/59 = 0.35