Answer:
14r−t+8w
Step-by-step explanation:
Let's simplify step-by-step.
8w+5r−t+9r
=8w+5r+−t+9r
Combine Like Terms:
=8w+5r+−t+9r
=(5r+9r)+(−t)+(8w)
=14r+−t+8w
Answer:
=14r−t+8w
Answer:
B-14
Step-by-step explanation:
Divide 220.50 by 15.75 and you will get 14
Hope it can help you lovelots
Answer:
Step-by-step explanation:
From the picture attached,
a). Triangle in the figure is ΔBCF
b). Since,
and
are the parallel lines and m is a transversal line,
m∠FBC = m∠BFG [Alternate interior angles]
Since,
and
are the parallel lines and n is a transversal line,
m∠BCF = m∠CFE [Alternate interior angles]
By triangle sum theorem in ΔBCF
m∠FBC + m∠BCF + m∠BFC = 180°
From the properties given above,
m∠BFG + m∠CFE + m∠BFC = 180°
m∠GFE = 180°
Therefore, angle GFE is the straight angle that will be useful in proving that the sum of the measures of the interior angles of the triangle is 180°.

Notice that

So as

you have

. Clearly

must converge.
The second sequence requires a bit more work.

The monotone convergence theorem will help here; if we can show that the sequence is monotonic and bounded, then

will converge.
Monotonicity is often easier to establish IMO. You can do so by induction. When

, you have

Assume

, i.e. that

. Then for

, you have

which suggests that for all

, you have

, so the sequence is increasing monotonically.
Next, based on the fact that both

and

, a reasonable guess for an upper bound may be 2. Let's convince ourselves that this is the case first by example, then by proof.
We have


and so on. We're getting an inkling that the explicit closed form for the sequence may be

, but that's not what's asked for here. At any rate, it appears reasonable that the exponent will steadily approach 1. Let's prove this.
Clearly,

. Let's assume this is the case for

, i.e. that

. Now for

, we have

and so by induction, it follows that

for all

.
Therefore the second sequence must also converge (to 2).
-20 = x + 16.....subtract 16 from both sides
-20 - 16 = x....combine like terms
-36 = x