I believe the answer is:
y+18 = (-52/3)(x-3) in point slope form
Let me know if you need an explanation. Hope this helps.
1st part is c
2nd part is d
I BELIEVE
1) Use the distributive property to eliminate parentheses.
.. 3(6x) -3(5) -7(3x) -7(10) = 0
.. 18x -15 -21x -70 = 0 . . . . . . finish multiplying terms
.. -3x -85 = 0 . . . . . . . . . . . . . collect like terms
.. -85 = 3x . . . . . . . . . . . . . . . .add 3x
.. -85/3 = x . . . . . . . . . . . . . . .divide by 3
.. -28 1/3 = x . . . . . . . . . . . . . write as mixed number
2) 5 -(6 +9x) = 9 -(4x -1)
.. 5 -6 -9x = 9 -4x +1 . . . . . eliminate parentheses using the distributive property
.. -1 -9x = 10 -4x . . . . . . . . . collect like terms
.. -1 = 10 +5x . . . . . . . . . . . . add 9x
.. -11 = 5x . . . . . . . . . . . . . . . subtract 10
.. -11/5 = x . . . . . . . . . . . . . . divide by 5
.. -2 1/5 = x . . . . . . . . . . . . . write as mixed number
Answer:
<h2>x = -0.2</h2>
Step-by-step explanation:
![-1(x+5)=3[x+2x-1)]\\\\\text{for}\ -1(x+5):\ \text{distribtutive property}\\\text{for}\ [x+(2x-1)]:\ \text{associative property}\\\\(-1)(x)+(-1)(5)=3[(x+2x)-1]\\-x-5=3(3x-1)\\\\\text{for}\ 3(3x-1):\ \text{distributive property}\\\\-x-5=(3)(3x)+(3)(-1)\\-x-5=9x-3\\\\\text{for the equation}:\ \text{addition property of equality}\\\\-x-5=9x-3\qquad\text{add 5 to both sides}\\-x-5+5=9x-3+5\\-x=9x+2\\\\\text{for the equation:}\ \text{subtraction property of equality}\\\\-x=9x+2\qquad\text{subtract}\ 9x\ \text{from both sides}](https://tex.z-dn.net/?f=-1%28x%2B5%29%3D3%5Bx%2B2x-1%29%5D%5C%5C%5C%5C%5Ctext%7Bfor%7D%5C%20-1%28x%2B5%29%3A%5C%20%5Ctext%7Bdistribtutive%20property%7D%5C%5C%5Ctext%7Bfor%7D%5C%20%5Bx%2B%282x-1%29%5D%3A%5C%20%5Ctext%7Bassociative%20property%7D%5C%5C%5C%5C%28-1%29%28x%29%2B%28-1%29%285%29%3D3%5B%28x%2B2x%29-1%5D%5C%5C-x-5%3D3%283x-1%29%5C%5C%5C%5C%5Ctext%7Bfor%7D%5C%203%283x-1%29%3A%5C%20%5Ctext%7Bdistributive%20property%7D%5C%5C%5C%5C-x-5%3D%283%29%283x%29%2B%283%29%28-1%29%5C%5C-x-5%3D9x-3%5C%5C%5C%5C%5Ctext%7Bfor%20the%20equation%7D%3A%5C%20%5Ctext%7Baddition%20property%20of%20equality%7D%5C%5C%5C%5C-x-5%3D9x-3%5Cqquad%5Ctext%7Badd%205%20to%20both%20sides%7D%5C%5C-x-5%2B5%3D9x-3%2B5%5C%5C-x%3D9x%2B2%5C%5C%5C%5C%5Ctext%7Bfor%20the%20equation%3A%7D%5C%20%5Ctext%7Bsubtraction%20property%20of%20equality%7D%5C%5C%5C%5C-x%3D9x%2B2%5Cqquad%5Ctext%7Bsubtract%7D%5C%209x%5C%20%5Ctext%7Bfrom%20both%20sides%7D)

