"<span>Assume that the paired data came from a population that is normally distributed. Using a 0.05 significance level and d = (x - y), find
![\bar{d}](https://tex.z-dn.net/?f=%20%5Cbar%7Bd%7D%20)
,
![s_{d}](https://tex.z-dn.net/?f=%20s_%7Bd%7D%20)
, the t-test statistic, and the critical values to test the claim that
![\mu_{d} = 0](https://tex.z-dn.net/?f=%20%5Cmu_%7Bd%7D%20%3D%200%20)
"
You did not attach the data, therefore I can give you the general explanation on how to find the values required and an example of a random paired data.
For the example, please refer to the attached picture.
A) Find </span><span>
![\bar{d}](https://tex.z-dn.net/?f=%20%5Cbar%7Bd%7D%20)
You are asked to find the
mean difference between the two variables, which is given by the formula:
![\bar{d} = \frac{\sum (x - y)}{n}](https://tex.z-dn.net/?f=%5Cbar%7Bd%7D%20%3D%20%20%5Cfrac%7B%5Csum%20%28x%20-%20y%29%7D%7Bn%7D%20)
These are the steps to follow:
1) compute for each pair the difference d = (x - y)
2) sum all the differences
3) divide the sum by the number of pairs (n)
In our example:
</span><span>
![\bar{d} = \frac{6}{8} = 0.75](https://tex.z-dn.net/?f=%5Cbar%7Bd%7D%20%3D%20%20%5Cfrac%7B6%7D%7B8%7D%20%3D%200.75%20)
</span>
B) Find <span>
![s_{d}](https://tex.z-dn.net/?f=%20s_%7Bd%7D%20)
</span><span>You are asked to find the
standard deviation, which is given by the formula:
</span>
![s_{d} = \sqrt{ \frac{\sum(d - \bar{d}) }{n-1} }](https://tex.z-dn.net/?f=%20s_%7Bd%7D%20%3D%20%20%5Csqrt%7B%20%5Cfrac%7B%5Csum%28d%20-%20%5Cbar%7Bd%7D%29%20%7D%7Bn-1%7D%20%7D%20%20)
These are the steps to follow:
1) Subtract the mean difference from each pair's difference
2) square the differences found
3) sum the squares
4) divide by the degree of freedom DF = n - 1
In our example:
![s_{d} = \sqrt{ \frac{101.5}{8-1} }](https://tex.z-dn.net/?f=s_%7Bd%7D%20%3D%20%5Csqrt%7B%20%5Cfrac%7B101.5%7D%7B8-1%7D%20%7D)
= √14.5
= 3.81
C) Find the t-test statistic.
You are asked to calculate the
t-value for your statistics, which is given by the formula:
![t = \frac{(\bar{x} - \bar{y}) - \mu_{d} }{SE}](https://tex.z-dn.net/?f=t%20%3D%20%20%5Cfrac%7B%28%5Cbar%7Bx%7D%20-%20%5Cbar%7By%7D%29%20-%20%5Cmu_%7Bd%7D%20%7D%7BSE%7D%20)
where SE =
standard error is given by the formula:
![SE = \frac{ s_{d} }{ \sqrt{n} }](https://tex.z-dn.net/?f=SE%20%3D%20%20%5Cfrac%7B%20s_%7Bd%7D%20%7D%7B%20%5Csqrt%7Bn%7D%20%7D%20)
These are the steps to follow:
1) calculate the standard error (divide the standard deviation by the number of pairs)
2) calculate the mean value of x (sum all the values of x and then divide by the number of pairs)
3) calculate the mean value of y (sum all the values of y and then divide by the number of pairs)
4) subtract the mean y value from the mean x value
5) from this difference, subtract
![\mu_{d}](https://tex.z-dn.net/?f=%20%5Cmu_%7Bd%7D%20)
6) divide by the standard error
In our example:
SE = 3.81 / √8
= 1.346
The problem gives us <span>
![\mu_{d} = 0](https://tex.z-dn.net/?f=%20%5Cmu_%7Bd%7D%20%3D%200%20)
, therefore:
t = [(9.75 - 9) - 0] / 1.346</span>
= 0.56
D) Find
![t_{\alpha / 2}](https://tex.z-dn.net/?f=%20t_%7B%5Calpha%20%2F%202%7D%20)
You are asked to find what is the
t-value for a 0.05 significance level.
In order to do so, you need to look at a t-table distribution for DF = 7 and A = 0.05 (see second picture attached).
We find <span>
![t_{\alpha / 2} = 1.895](https://tex.z-dn.net/?f=%20t_%7B%5Calpha%20%2F%202%7D%20%3D%201.895)
</span>
Since our t-value is less than <span>
![t_{\alpha / 2}](https://tex.z-dn.net/?f=%20t_%7B%5Calpha%20%2F%202%7D)
</span> we can reject our null hypothesis!!