Answer:
The potential difference between the plates is 8 V.
Explanation:
Given that,
Area of plates = 0.40 m²
Charge 
Distance = 4.0 cm
We need to calculate the electric field
Using for formula of electric field

Where, q = charge
A = area
Put the value into the formula


We need to calculate the potential difference between the plates
Using formula of potential difference

Where, E = electric field
d = distance
Put the value into the formula


Hence, The potential difference between the plates is 8 V.
Answer:
Travelled 18 km, they are 6 km from home.
Explanation:
12/2 (halfway) is 6km. So, 6 + 12 would be 18 km, total amount travelled. The total distance of the trip would be 24 km (12 km out, 12km back) if they travelled 12+6 (18km) then they only have 6 km more to go.
The applied force is different for the two cases
The case A with a greater force involves the greatest momentum change
The case A involves the greatest force.
<h3>What is collision?</h3>
- This is the head-on impact between two object moving in opposite or same direction.
The initial momentum of the two ball is the same.
P = mv
where;
- m is the mass of each
- v is the initial velocity of each ball
Since the force applied by the arm is different, the final velocity of the balls before stopping will be different.
Thus, the final momentum of each ball will be different
The impulse experienced by each ball is different since impulse is the change in momentum of the balls.
J = ΔP
The force applied by the rigid arm is greater than the force applied by the relaxed arm because the force applied by the rigid arm will cause the ball to be brought to rest faster.
Thus, we can conclude the following;
- The applied force is different for the two cases
- The case A with a greater force involves the greatest momentum change
- The case A involves the greatest force.
Learn more about impulse here: brainly.com/question/25700778