Answer:
Applications of zeroth law of thermodynamics:
1. When we get very hot food, we wait to make it normal. In this case, hot food exchanges heat with surrounding and brings equilibrium.
2. We keep things in the fridge and those things come equilibrium with fridge temperature.
3. Temperature measurement with a thermometer or another device.
4. In the HVAC system, sensors or thermostats are used to indicate temperature. It always comes in a thermal equilibrium with room temperature.
5. If you and the swimming pool you’re in are at the same temperature, no heat is flowing from you to it or from it to you (although the possibility is there). You’re in thermal equilibrium.
You have not provided the diagram, therefore, I cannot provide an exact answer.
However, I will try to help by explaining how to solve this problem.
When light moves from air to glass:1- part of the light is reflected back into the air where the angle of incidence is equal to the angle of reflection
2- part of the light enters the water and refracts. The angle of refraction can be calculated using Snell's law.
In a diagram, the reflected ray would be the one getting back into air while the refracted ray would be the one entering the water.
You can check the attached diagram for further illustrations.
Hope this helps :)
Answer:Near-field communication
Explanation:
Near Field Communication is an umbrella term that applies to location-aware technologies that allow devices to communicate securely with each other over short distances. Near-field communication is a short-range wirelessconnectivity standard that uses magnetic field induction to enable communication between devices when they're touched together, or brought within a few centimeters to each other.It also specifies a way for the devices to establish a peer-to-peer network to exchange data. After the peer to peer network has been configured, another wireless communication technology, such as Bluetooth or Wi-Fi, can be used for longer-range communication or for transferring larger amounts of data.
Answer:
F, F, f (if I'm understanding the question correctly)
Explanation:
Phenotypes are the physical trait shown. In FF, Ff, ff a capital letter means that the gene is dominant and therefore always shows when paired with either another of itself or a recessive (lowercase). So, for FF, you see F as the phenotype shown, and for Ff, you see F as the phenotype because F is dominant over the recessive f. In ff, however, since you have two recessives, only then can you see f as the phenotype because you have no dominant traits.