1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lesya [120]
3 years ago
14

Please help will give brainliest

Mathematics
2 answers:
Harlamova29_29 [7]3 years ago
6 0

B is the quotient. your welcome

almond37 [142]3 years ago
5 0

Step-by-step explanation:

\frac{32.5}{33.8}  = 0.9615

You might be interested in
Find the product 12, -5 (a) -60 (b) 17 (c) 7 (d) -2.4
sergiy2304 [10]
The correct answer is:  [A]:  " -60 " .
________________________________________________________
Explanation:
________________________________________________________
We are asked to find the "product" of the two numbers, " 12 " and " -5 " .
________________________________________________________
The "product" refers to the result of "multiplying" numbers.
________________________________________________________
So, what is the value, when "12" is multiplied by "-5" ? 
________________________________________________________
<u>Note</u>:  When a "positive number" is multiplied by a "negative number" , the result is a "negative number" . 
________________________________________________________
So;  the product of "12" and "-15" is:  " 12 * -5 " ;   which equals:  " -60 " ; 

which is:  Answer choice:  [A]:  " - 60 " .
________________________________________________________
6 0
3 years ago
What is “four is an even number” in mathematical sentence?
barxatty [35]

Answer:

4 is even; 4 can be divided by 2 and the quotient is whole.

Step-by-step explanation:

If a number is even, it can be divided by 2 and the quotient is a whole number. 4 can be divided by 2 and the quotient is whole, so we can say 4 is even.

5 0
3 years ago
Please answer this question, i request
Jet001 [13]

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

3 0
2 years ago
Need help on 1 and 7 please giving out 19 points
Serjik [45]

Answer:

for number one the answer is no for 7 the answer is 5 seconds

Step-by-step explanation:

4 0
3 years ago
Please help me with this! if you do you will get brainliest
VLD [36.1K]

Answer:

not -7 just 7

Step-by-step explanation:

3 0
3 years ago
Other questions:
  • How can you determine if a relation is a function?
    14·1 answer
  • What is the expanded form of 33,169
    5·1 answer
  • ______________________________________________________________________________________
    5·2 answers
  • Please help: y − 5x = 3<br> solve for y.
    5·1 answer
  • If cos 0 = 0.3846 where 3pi/2 is less than 0 is less than 2pi, what is the approximate value of sin 0?
    7·1 answer
  • If the product of two numbers equals zero, at least one of the numbers must be
    12·1 answer
  • PLEASE HELP!!! QUESTION IS THE PICTURE!!!​
    12·2 answers
  • david invest $10,000 in a CD that pays 8% compounded quarterly. how long will it take his investment to double
    9·1 answer
  • How many solutions does this equation have?<br><br> 7s − 6 − 5 = 7s + 17
    15·2 answers
  • Need help ASAP! Directions and problem in the picture ;)
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!