1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sedbober [7]
3 years ago
7

Pls help me I don't get it, please help asap

Mathematics
1 answer:
Olin [163]3 years ago
7 0

Step-by-step explanation: khó quá ạ

You might be interested in
The sum of the squares of two consecutive negative integers is 61. Find the smaller of the two integers
Marysya12 [62]
x^2+(x+1)^2=61\\ x^2+x^2+2x+1-61=0\\ 2x^2+2x-60=0\ \ /:2\\ x^2+x-30=0\\ \Delta=1^2-4\cdot(-40)=1+120=121\ \ \Rightarrow\ \  \sqrt{\Delta} =11\\ \\ x_1= \frac{-1-11}{2} = \frac{-12}{2} =-6,\ \ \ \ x_2= \frac{-1+11}{2} = \frac{10}{2}=5\\ \\Ans.:x=-6
3 0
3 years ago
1. Derive the half-angle formulas from the double
lilavasa [31]

1) cos (θ / 2) = √[(1 + cos θ) / 2], sin (θ / 2) = √[(1 - cos θ) / 2], tan (θ / 2) = √[(1 - cos θ) / (1 + cos θ)]

2) (x, y) → (r · cos θ, r · sin θ), where r = √(x² + y²).

3) The point (x, y) = (2, 3) is equivalent to the point (r, θ) = (√13, 56.309°). The point (r, θ) = (4, 30°) is equivalent to the point (x, y) = (2√3, 2).

4) The <em>linear</em> function y = 5 · x - 8 is equivalent to the function r = - 8 / (sin θ - 5 · cos θ).

<h3>How to apply trigonometry on deriving formulas and transforming points</h3>

1) The following <em>trigonometric</em> formulae are used to derive the <em>half-angle</em> formulas:

sin² θ / 2 + cos² θ / 2 = 1                      (1)

cos θ = cos² (θ / 2) - sin² (θ / 2)           (2)

First, we derive the formula for the sine of a <em>half</em> angle:

cos θ = 2 · cos² (θ / 2) - 1

cos² (θ / 2) = (1 + cos θ) / 2

cos (θ / 2) = √[(1 + cos θ) / 2]

Second, we derive the formula for the cosine of a <em>half</em> angle:

cos θ = 1 - 2 · sin² (θ / 2)

2 · sin² (θ / 2) = 1 - cos θ

sin² (θ / 2) = (1 - cos θ) / 2

sin (θ / 2) = √[(1 - cos θ) / 2]

Third, we derive the formula for the tangent of a <em>half</em> angle:

tan (θ / 2) = sin (θ / 2) / cos (θ / 2)

tan (θ / 2) = √[(1 - cos θ) / (1 + cos θ)]

2) The formulae for the conversion of coordinates in <em>rectangular</em> form to <em>polar</em> form are obtained by <em>trigonometric</em> functions:

(x, y) → (r · cos θ, r · sin θ), where r = √(x² + y²).

3) Let be the point (x, y) = (2, 3), the coordinates in <em>polar</em> form are:

r = √(2² + 3²)

r = √13

θ = atan(3 / 2)

θ ≈ 56.309°

The point (x, y) = (2, 3) is equivalent to the point (r, θ) = (√13, 56.309°).

Let be the point (r, θ) = (4, 30°), the coordinates in <em>rectangular</em> form are:

(x, y) = (4 · cos 30°, 4 · sin 30°)

(x, y) = (2√3, 2)

The point (r, θ) = (4, 30°) is equivalent to the point (x, y) = (2√3, 2).

4) Let be the <em>linear</em> function y = 5 · x - 8, we proceed to use the following <em>substitution</em> formulas: x = r · cos θ, y = r · sin θ

r · sin θ = 5 · r · cos θ - 8

r · sin θ - 5 · r · cos θ = - 8

r · (sin θ - 5 · cos θ) = - 8

r = - 8 / (sin θ - 5 · cos θ)

The <em>linear</em> function y = 5 · x - 8 is equivalent to the function r = - 8 / (sin θ - 5 · cos θ).

To learn more on trigonometric expressions: brainly.com/question/14746686

#SPJ1

4 0
2 years ago
Please help me out I really need this asap
Sever21 [200]

Answer:

200

Step-by-step explanation:

8 0
2 years ago
Write the linear equation that gives the rule for this table.
MAVERICK [17]

Answer:

The linear equation that gives the rule for this table will be:

  • y=x+25

Step-by-step explanation:

Taking two points from the table

  • (2, 27)
  • (3, 28)

Finding the slope between two points

\mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}

\left(x_1,\:y_1\right)=\left(2,\:27\right),\:\left(x_2,\:y_2\right)=\left(3,\:28\right)

m=\frac{28-27}{3-2}

m=1

We know the slope-intercept form of linear equation is

y=mx+b

where m is the slope and b is the y-intercept

substituting the point (2, 27) and m=1 in the slope-intercept form to determine the y-intercept 'b'

y=mx+b

27 = 1(2)+b

27-2 = b

b = 25

Now, substituting m=1 and b=25 in the slope-intercept form to determine the linear equation

y=mx+b

y=1(x)+25

y=x+25

Thus, the linear equation that gives the rule for this table will be:

  • y=x+25
4 0
2 years ago
Y is a random variable that is distributed N(-16, 1.21). Find k such that Prob(-15.043 &lt; Y ≤ k) = 0.1546. (Round your answer
IgorLugansk [536]

Transform <em>Y</em> to <em>Z</em>, which is distributed N(0, 1), using the formula

<em>Y</em> = <em>µ</em> + <em>σZ</em>

where <em>µ</em> = -16 and <em>σ</em> = 1.21.

Pr[-15.043 < <em>Y</em> ≤ <em>k</em>] = 0.1546

Pr[(-15.043 + 16)/1.21 < (<em>Y</em> + 16)/1.21 ≤ (<em>k</em> + 16)/1.21] = 0.1546

Pr[0.791 < <em>Z</em> ≤ (<em>k</em> + 16)/1.21] ≈ 0.1546

Pr[<em>Z</em> ≤ (<em>k</em> + 16)/1.21] - Pr[<em>Z</em> < 0.791] = 0.1546

Pr[<em>Z</em> ≤ (<em>k</em> + 16)/1.21] = 0.1546 + Pr[<em>Z</em> < 0.791]

Pr[<em>Z</em> ≤ (<em>k</em> + 16)/1.21] ≈ 0.1546 + 0.786

Pr[<em>Z</em> ≤ (<em>k</em> + 16)/1.21] ≈ 0.940

Take the inverse CDF of both sides (<em>Φ(x)</em> denotes the CDF itself):

(<em>k</em> + 16)/1.21 ≈ <em>Φ⁻¹</em> (0.940) ≈ 1.556

Solve for <em>k</em> :

<em>k</em> + 16 = 1.21 • 1.556

<em>k</em> ≈ -14.118

8 0
3 years ago
Other questions:
  • A wall clock loses 3 minutes each day. The clock showed the correct time on Monday at 11:00 am. What time will the clock show at
    5·1 answer
  • What is the correctly result for 2+(3-4)*9
    15·1 answer
  • Which of the following are square roots of the number below? Check all that
    10·1 answer
  • Calculate the area and perimeter plz help
    7·1 answer
  • I HATE word problems can you do this?
    15·1 answer
  • Use each of these prime numbers once. Write one of them in every empty square
    10·1 answer
  • Find the slope of the line y = 5x + 4.
    12·1 answer
  • ABC is an isosceles triangle with
    15·1 answer
  • Can’t figure this problem out need help
    11·1 answer
  • -9+b=3.5 what is the value of b?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!