Answer:
Option C
23.08% markup on selling price.
Step-by-step explanation:
Given in the question,
markup percentage on cost price = 30%
To find,
markup percentage on selling price
Markup is the ratio between the cost of a good or service and its selling price.
Let suppose that cost price percentage = 100%
As we know that,
<h3>cost% + markup% = selling%</h3><h3>100% + 30% = 130%</h3>
So percent markup selling price = 30 / 130 x 100
= 23.0769
Hence, 30% markup on cost price = 23.0769% markup on selling price.
Well he started off right by solving for y=y to find the abscissa of the intersection points between the two points,but then he assumed that their ordinate (y coordinates) are both zero,which is incorrect obviously. To find their ordinate,all we have to do is plug the x values into any of the two equations, since they both will pass through that point ੴ


I chose to plug the values in the second linear equation, since it's easier to compute
<h2>
Points:</h2>
<h2>
( 3 , 13 ) ( -2 , -7 )</h2>
Currently, he only makes 1/3 of his kicks. ... A number cube is being used to simulate the result of Bo's kicks where the numbers 11 or 22
Answer:
The initial height of the balloon is 2 feet.
Step-by-step explanation:
The height of the balloon in feet after t seconds is given by the following equation:

What is the initial height of the balloon?
This is h when t = 0, that is, h(0). So

The initial height of the balloon is 2 feet.
Answer:
- 4x² - 13x + 8 = 0
- 4x² - 11x + 5 = 0
- 16x² - 41x + 1 = 0
- x² + 5x + 4 = 0
- x² - 66x + 64 = 0
Step-by-step explanation:
<u>Given</u>
- α and β are roots of 4x²-5x-1=0
<u>Then the sum and product of the roots are:</u>
- α+b = -(-5)/4 = 5/4
- αβ = -1/4
(i) <u>Roots are α + 1 and β + 1, then we have:</u>
- (x - (α + 1))(x - (β + 1)) = 0
- (x - α - 1)(x - β - 1) = 0
- x² - (α+β+2)x + α+β+ αβ + 1 = 0
- x² - (5/4+2)x +5/4 - 1/4 + 1 = 0
- x² - 13/4x + 2= 0
- 4x² - 13x + 8 = 0
(ii) <u>Roots are 2 - α and 2 - β, then we have:</u>
- (x + α - 2)(x + β - 2) = 0
- x² + (a + β - 4)x - 2(α + β) + αβ + 4 = 0
- x² + (5/4 - 4)x - 2(5/4) - 1/4 + 4 = 0
- x² - 11/4x - 10/4 - 1/4 + 16/4 = 0
- x² - 11/4x + 5/4x = 0
- 4x² - 11x + 5 = 0
(iii) <u>Roots are α² and β², then:</u>
- (x - α²)(x-β²) = 0
- x² -(α²+β²)x + (αβ)² = 0
- x² - ((α+β)² - 2αβ)x + (-1/4)² = 0
- x² - ((5/4)² -2(-1/4))x + 1/16 = 0
- x² - ( 25/16 + 1/2)x + 1/16 = 0
- x² - 33/16x + 1/16 = 0
- 16x² - 33x + 1 = 0
(iv) <u>Roots are 1/α and 1/β, then:</u>
- (x - 1/α)(x - 1/β) = 0
- x² - (1/α+1/β)x + 1/αβ = 0
- x² - ((α+β)/αβ)x + 1/αβ = 0
- x² - (5/4)/(-1/4)x - 1/(-1/4) = 0
- x² + 5x + 4 = 0
(v) <u>Roots are 2/α² and 2/β², then:</u>
- (x - 2/α²)(x - 2/β²) = 0
- x² - (2/α² + 2/β²)x + 4/(αβ)² = 0
- x² - 2((α+β)² - 2αβ)/(αβ)²)x + 4/(αβ)² = 0
- x² - 2((5/4)² - 2(-1/4))/(-1/4)²x + 4/(-1/4)² = 0
- x² - 2(25/16 + 8/16)/(1/16)x + 4(16) = 0
- x² - 2(33)x + 64 = 0
- x² - 66x + 64 = 0