Answer:
The cat weighs 4.717 kg
One kilogram (kg) is 2.2 lbs
Divide 10.4 by 2.2
Hope this helps! :)
Answer:
D
Step-by-step explanation:
diameter of 1 circle = 21.3/3= 7.1
radius of 1 circle= 7.1/3=3.55
area of 1 circle =πr^2=3.14× (3.55)^2=39.57
area of 3 circle= 39.57×3=118.72
therefore,area of shaded portion= area of 3 circle =118.72
The answer you will need is seven hop I was helpful do me a favor and click on thank on the bottom
Answer:
The equation in the slope-intercept form will be:
y = 1/4x - 7
Step-by-step explanation:
Given the points
![\mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}](https://tex.z-dn.net/?f=%5Cmathrm%7BSlope%7D%3D%5Cfrac%7By_2-y_1%7D%7Bx_2-x_1%7D)
![\left(x_1,\:y_1\right)=\left(-4,\:-8\right),\:\left(x_2,\:y_2\right)=\left(-8,\:-9\right)](https://tex.z-dn.net/?f=%5Cleft%28x_1%2C%5C%3Ay_1%5Cright%29%3D%5Cleft%28-4%2C%5C%3A-8%5Cright%29%2C%5C%3A%5Cleft%28x_2%2C%5C%3Ay_2%5Cright%29%3D%5Cleft%28-8%2C%5C%3A-9%5Cright%29)
![m=\frac{-9-\left(-8\right)}{-8-\left(-4\right)}](https://tex.z-dn.net/?f=m%3D%5Cfrac%7B-9-%5Cleft%28-8%5Cright%29%7D%7B-8-%5Cleft%28-4%5Cright%29%7D)
![m=\frac{1}{4}](https://tex.z-dn.net/?f=m%3D%5Cfrac%7B1%7D%7B4%7D)
We know that the slope-intercept of line equation is
![y=mx+b](https://tex.z-dn.net/?f=y%3Dmx%2Bb)
where m is the slope and b is the y-intercept
substituting m = 1/4 and the point (-4, -8) to find the y-intercept 'b'
y = mx+b
-8 = 1/4(-4)+b
-8 = -1 + b
b = -8+1
b = -7
so the y-intercept = b = -7
substituting m = 1/4 and b = -7 in the slope-intercept form of line equation
y = mx+b
y = 1/4x + (-7)
y = 1/4x - 7
Thus, the the equation in slope-intercept form will be:
y = 1/4x - 7
Answer:
![\displaystyle T'( 2,4)](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20T%27%28%20%202%2C4%29)
![\displaystyle U'( 1,1)](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20U%27%28%201%2C1%29)
![\displaystyle S' ( 3,2)](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20S%27%20%28%203%2C2%29)
Step-by-step explanation:
we current vertices of the given triangle
remember that,
![\rm\displaystyle(x,y) \xrightarrow{ \rm reflection \: over \: y - axis}( - x,y)](https://tex.z-dn.net/?f=%20%20%5Crm%5Cdisplaystyle%28x%2Cy%29%20%5Cxrightarrow%7B%20%5Crm%20reflection%20%5C%3A%20%20over%20%5C%3A%20y%20-%20axis%7D%28%20-%20%20x%2Cy%29)
so we obtain:
![\rm\displaystyle \: T( - 2,4) \xrightarrow{ \rm reflection \: over \: y - axis}T'( 2,4)](https://tex.z-dn.net/?f=%20%20%5Crm%5Cdisplaystyle%20%5C%3A%20T%28%20-%202%2C4%29%20%5Cxrightarrow%7B%20%5Crm%20reflection%20%5C%3A%20%20over%20%5C%3A%20y%20-%20axis%7DT%27%28%20%202%2C4%29)
![\rm\displaystyle \: U( - 1,1) \xrightarrow{ \rm reflection \: over \: y - axis}U' ( 1,1)](https://tex.z-dn.net/?f=%20%20%5Crm%5Cdisplaystyle%20%5C%3A%20U%28%20-%201%2C1%29%20%5Cxrightarrow%7B%20%5Crm%20reflection%20%5C%3A%20%20over%20%5C%3A%20y%20-%20axis%7DU%27%20%28%201%2C1%29)
![\rm\displaystyle S( - 3,2) \xrightarrow{ \rm reflection \: over \: y - axis}S'( 3,2)](https://tex.z-dn.net/?f=%20%20%5Crm%5Cdisplaystyle%20S%28%20-%203%2C2%29%20%5Cxrightarrow%7B%20%5Crm%20reflection%20%5C%3A%20%20over%20%5C%3A%20y%20-%20axis%7DS%27%28%203%2C2%29)