<em>Hope</em><em> </em><em>this</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em><em>.</em><em>.</em><em>:</em><em>)</em>
Answer:
teenagers who watch TV =2
teenagers wearing glasses =5
hence probability =2/5=0.4
now you prove how ur answer is 0.5
Answer:
a) 81.5%
b) 95%
c) 75%
Step-by-step explanation:
We are given the following information in the question:
Mean, μ = 266 days
Standard Deviation, σ = 15 days
We are given that the distribution of length of human pregnancies is a bell shaped distribution that is a normal distribution.
Formula:

a) P(between 236 and 281 days)

b) a) P(last between 236 and 296)

c) If the data is not normally distributed.
Then, according to Chebyshev's theorem, at least
data lies within k standard deviation of mean.
For k = 2

Atleast 75% of data lies within two standard deviation for a non normal data.
Thus, atleast 75% of pregnancies last between 236 and 296 days approximately.
Use a ruler. I can't see the picture.
Answer:
x = 15.4
Step-by-step explanation:
Because this is a right triangle, you can use the pythagorean theorem to find the length of the hypotenuse. the theorem is a^2 + b^2 = c^2
so
9^2 + 12.5^2 = c^2
solving this will give you 15.4