Need more of a backstory to this?
Answer:
Your strategy here will be to use the molar mass of potassium bromide,
KBr
, as a conversion factor to help you find the mass of three moles of this compound.
So, a compound's molar mass essentially tells you the mass of one mole of said compound. Now, let's assume that you only have a periodic table to work with here.
Potassium bromide is an ionic compound that is made up of potassium cations,
K
+
, and bromide anions,
Br
−
. Essentially, one formula unit of potassium bromide contains a potassium atom and a bromine atom.
Use the periodic table to find the molar masses of these two elements. You will find
For K:
M
M
=
39.0963 g mol
−
1
For Br:
M
M
=
79.904 g mol
−
1
To get the molar mass of one formula unit of potassium bromide, add the molar masses of the two elements
M
M KBr
=
39.0963 g mol
−
1
+
79.904 g mol
−
1
≈
119 g mol
−
So, if one mole of potassium bromide has a mas of
119 g
m it follows that three moles will have a mass of
3
moles KBr
⋅
molar mass of KBr
119 g
1
mole KBr
=
357 g
You should round this off to one sig fig, since that is how many sig figs you have for the number of moles of potassium bromide, but I'll leave it rounded to two sig figs
mass of 3 moles of KBr
=
∣
∣
∣
∣
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
a
a
360 g
a
a
∣
∣
−−−−−−−−−
Explanation:
<em>a</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em>:</em><em> </em><em>3</em><em>6</em><em>0</em><em> </em><em>g</em><em> </em>
Answer: b. The waste generated is hazardous and must be disposed of.
c. Nuclear material can be spilled into the ocean if reactors are near the coast.
d. A large amount of cold water is generated, which must be stored somewhere.
Explanation:
The main environmental costs for produced during the nuclear power plant consists of procurement of fuel and the thermal load is also produced with cold water discharge in the sea. This can contaminate the sea, hence, must be stored somewhere. The nuclear waste consists of radioactive substances which are hazardous for the environment. The nuclear based electricity does not produce carbon dioxide.
Explanation:
Quite a number of properties varies across a period. Some remains constant whereas others decreases.
As one moves from left to right;
- The energy level remains the same.
- The ionization energy increases progressively as a result of increasing nuclear charge.
- Electron affinity increases from left to right.
- Electronegativity increases.
- Electropositivity decreases.
learn more:
Periodic table brainly.com/question/2014634
#learnwithBrainly