Phosphoric acid can act like the acetic acid (vinegar) that can convert chemical energy into electrical energy.
Answer:
1 mole of a gas would occupy 22.4 Liters at 273 K and 1 atm
Explanation:
An ideal gas is a set of atoms or molecules that move freely without interactions. The pressure exerted by the gas is due to the collisions of the molecules with the walls of the container. The ideal gas behavior is at low pressures, that is, at the limit of zero density. At high pressures the molecules interact and intermolecular forces cause the gas to deviate from ideality.
An ideal gas is characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of the gases:
P * V = n * R * T
In this case:
- P= 1 atm
- V= 22.4 L
- n= ?
- R= 0.082
- T=273 K
Reemplacing:
1 atm* 22.4 L= n* 0.082 *273 K
Solving:
n= 1 mol
Another way to get the same result is by taking the STP conditions into account.
The STP conditions refer to the standard temperature and pressure. Pressure values at 1 atmosphere and temperature at 0 ° C (or 273 K) are used and are reference values for gases. And in these conditions 1 mole of any gas occupies an approximate volume of 22.4 liters.
<u><em>1 mole of a gas would occupy 22.4 Liters at 273 K and 1 atm</em></u>
The answer is D. And if it is equally shared it is nonpolar covalent bond
Answer:
B- The polarity of the molecules and hydrogen bonding between molecules.
Explanation:
Hope this helps:)
The mass number = protons + neutrons. Bromine has a mass number of 80<span> and 35 protons so </span>80<span>-35 = </span>45<span> neutrons. b) How many electrons does the neutral atom of bromine have? The neutral atom of bromine has 35 electrons because the number of electrons equals the number of protons.</span>