Answer:
% here x and y is given which we can take as
x = 2:2:10;
y = 2:2:10;
% creating a matrix of the points
point_matrix = [x;y];
% center point of rotation which is 2,2 here
x_center_pt = x(2);
y_center_pt = y(2);
% creating a matrix of the center point
center_matrix = repmat([x_center_pt; y_center_pt], 1, length(x));
% rotation matrix with rotation degree which is 45 degree
rot_degree = pi/4;
Rotate_matrix = [cos(rot_degree) -sin(rot_degree); sin(rot_degree) cos(rot_degree)];
% shifting points for the center of rotation to be at the origin
new_matrix = point_matrix - center_matrix;
% appling rotation
new_matrix1 = Rotate_matrix*new_matrix;
Explanation:
We start the program by taking vector of the point given to us and create a matrix by adding a scaler to each units with repmat at te center point which is (2,2). Then we find the rotation matrix by taking the roatational degree which is 45 given to us. After that we shift the points to the origin and then apply rotation ans store it in a new matrix called new_matrix1.
Answer:
A wave that has been digitized can be played back as a wave over and over, and it will be the same every time. For that reason, digital signals are a very reliable way to record information—as long as the numbers in the digital signal don’t change, the information can be reproduced exactly over and over again.
Explanation:
Answer:
Running RECURSIVE-MATRIX-CHAIN is asymptotically more efficient than enumerating all the ways of parenthesizing the product and computing the number of multiplications of each.
the running time complexity of enumerating all the ways of parenthesizing the product is n*P(n) while in case of RECURSIVE-MATRIX-CHAIN, all the internal nodes are run on all the internal nodes of the tree and it will also create overhead.
Explanation: