Put the differential equation 9ty+ety′=yt2+81 into the form y′+p(t)y=g(t) and find p(t) and g(t). p(t)= help (formulas) g(t)= he
lp (formulas) Is the differential equation 9ty+ety′=yt2+81 linear and homogeneous, linear and nonhomogeneous, or nonlinear?
1 answer:
Answer:

g(t) = 0
And
The differential equation
is linear and homogeneous
Step-by-step explanation:
Given that,
The differential equation is -

![e^{t}y' + (9t - \frac{1}{t^{2} + 81 } )y = 0\\e^{t}y' + (\frac{9t(t^{2} + 81 ) - 1}{t^{2} + 81 } )y = 0\\e^{t}y' + (\frac{9t^{3} + 729t - 1}{t^{2} + 81 } )y = 0\\y' + [\frac{9t^{3} + 729t - 1}{e^{t}(t^{2} + 81) } ]y = 0](https://tex.z-dn.net/?f=e%5E%7Bt%7Dy%27%20%2B%20%289t%20-%20%5Cfrac%7B1%7D%7Bt%5E%7B2%7D%20%2B%2081%20%7D%20%29y%20%3D%200%5C%5Ce%5E%7Bt%7Dy%27%20%2B%20%28%5Cfrac%7B9t%28t%5E%7B2%7D%20%2B%2081%20%29%20-%201%7D%7Bt%5E%7B2%7D%20%2B%2081%20%7D%20%29y%20%3D%200%5C%5Ce%5E%7Bt%7Dy%27%20%2B%20%28%5Cfrac%7B9t%5E%7B3%7D%20%2B%20729t%20%20-%201%7D%7Bt%5E%7B2%7D%20%2B%2081%20%7D%20%29y%20%3D%200%5C%5Cy%27%20%2B%20%5B%5Cfrac%7B9t%5E%7B3%7D%20%2B%20729t%20%20-%201%7D%7Be%5E%7Bt%7D%28t%5E%7B2%7D%20%2B%2081%29%20%7D%20%5Dy%20%3D%200)
By comparing with y′+p(t)y=g(t), we get

g(t) = 0
And
The differential equation
is linear and homogeneous.
You might be interested in
Answer:
617 pickles left >:)
Step-by-step explanation:
1234 divided by 2(half) is 617
also fred is very hungry if he wanted 617 pickles...and greedy
C = 5/9(F - 32) = 5/9(94 - 32) = 5/9(62) = 34 4/9 C
Answer:
C
Step-by-step explanation:
- C = 2πr
- 2π = 2 × 3.14 = 6.28
- 6.28 × 8 = 50.24 feet
I hope this helps!
Answer:
x^2 + x-72=0
Step-by-step explanation:
x(x+1) =72
Distribute
x^2 +x = 72
Subtract 72 from each side
x^2 +x - 72 = 0
Now this is the equation we can factor