Answer:
a) The function is constantly increasing and is never decreasing
b) There is no local maximum or local minimum.
Step-by-step explanation:
To find the intervals of increasing and decreasing, we can start by finding the answers to part b, which is to find the local maximums and minimums. We do this by taking the derivatives of the equation.
f(x) = ln(x^4 + 27)
f'(x) = 1/(x^2 + 27)
Now we take the derivative and solve for zero to find the local max and mins.
f'(x) = 1/(x^2 + 27)
0 = 1/(x^2 + 27)
Since this function can never be equal to one, we know that there are no local maximums or minimums. This also lets us know that this function will constantly be increasing.
Heyyyoooooooooo I got youuuuuu giveeee meeee a second pleaseeeeeee
By concepts of polynomials and systems of linear equations, the constants c and d of the expression p(x) = x⁴ - 5 · x³ - 7 · x² + c · x + d are 29 and 30.
<h3>How to determine the missing coefficients of a quartic equation</h3>
A value x is a root of a polynomial if and only if p(x) = 0. We must replace the given equation with the given roots and solve the resulting system of <em>linear</em> equations:
(- 1)⁴ - 5 · (- 1)³ - 7 · (- 1)² + (- 1) · c + d = 0
- c + d = 1 (1)
3⁴ - 5 · 3³ - 7 · 3² + 3 · c + d = 0
3 · c + d = 117 (2)
The solution of this system is c = 29 and d = 30.
By concepts of polynomials and systems of linear equations, the constants c and d of the expression p(x) = x⁴ - 5 · x³ - 7 · x² + c · x + d are 29 and 30.
To learn more on polynomials: brainly.com/question/11536910
#SPJ1