Answer:
Find the ratio of hops to distance traveled (1: 1.5), then multiply 150 by 1.5.
Step-by-step explanation:
A child is hopping along a sidewalk. The ratio table below shows the comparison between the number of hops and the distance traveled. Hopping Number of hops Distance traveled (ft) 20 30 50 75 80 120 150 ?
Which statement correctly explains how to find the distance traveled after 150 hops? Subtract 120 – 75 to get 45, then add that number to 120. Add 30 + 75 + 120. Find the ratio of hops to distance traveled (1:1.5), then multiply 150 by 1.5. Find the ratio of hops to distance traveled (1:1.5), then divide 150 by 1.5.
Solution:
The table is:
No. of hops Distance traveled
20 30
50 75
80 120
150 ?
From the table, for every 30 increase in the number of hops, the distance travelled increase by 45 feet
Find the slope of the line:
m = (y2-y1) / (x2-x1)
m=slope of the line
y2-y1 = change in distance travelled
x-2 - x1 = Change in number of hops
m = (y2-y1) / (x2-x1)
m = (75-30) / (50-20)
=45 / 30
m = 1.5
Then, the line is:
y = 1.5x
We substitute x = 150
y = 1.5x
y = 1.5 × 150
y = 225
128 degrees I hope this helped you
Answer:
Wonka bars=3 and Everlasting Gobstoppers=24
Step-by-step explanation:
let the wonka bars be X
and everlasting gobstoppers be Y
the objective is to
maximize 1.3x+3.2y=P
subject to constraints
natural sugar
4x+2y=60------1
sucrose
x+3y=75---------2
x>0, y>0
solving 1 and 2 simultaneously we have
4x+2y=60----1
x+3y=75------2
multiply equation 2 by 4 and equation 1 by 1 to eliminate x we have
4x+2y=60
4x+12y=300
-0-10y=-240
10y=240
y=240/10
y=24
put y=24 in equation 2 we have'
x+3y=75
x+3(24)=75
x+72=75
x=75-72
x=3
put x=3 and y=24 in the objective function we have
maximize 1.3x+3.2y=P
1.3(3)+3.2(24)=P
3.9+76.8=P
80.7=P
P=$80.9
Answer:
-8x^2+26x-21
Step-by-step explanation: