1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vinil7 [7]
2 years ago
14

Sarah bought a pair of shoes that were discounted 12.5%. If the non-sale price was s,

Mathematics
1 answer:
fgiga [73]2 years ago
7 0

Answer:

B

Step-by-step explanation:

You might be interested in
How many nickels in five dollars
soldi70 [24.7K]
There are 20 nickels in 1 dollar so you would do 20 x 5 which is 100

So there are 100 nickels in 5 dollars :)

Brainliest Answer please.
8 0
3 years ago
Read 2 more answers
2. El perimetro de un rectangulo es 64 pies. Su largo es 12 pies mas que 3 veces su ancho. Halla las dimensiones del rectangulo
Afina-wow [57]
Ancho= x
Largo= 3x+12 ("12 pies más (adición) que 3 veces (multiplicación) su ancho (x)")

<span>En el problema incluyen el perímetro (la suma de todos los lados de una figura). </span>En un rectángulo, los lados opuestos son congruentes, así que para calcular el valor de x, tenemos que sumar nuestras ecuaciones.

(3x+12)+(3x+12)+x+x=64
8x=64-24
x=40/8
x=5

Luego lo único que queda hacer es substituir el valor de x en cada ecuación para calcular los valores que te piden.



4 0
3 years ago
Kevin has three pieces of wood. Board A is 6 inches long, board B is 11 inches long, and board C is 4 inches long. If the full l
Alik [6]

Answer:

b. no, 6 + 4 < 11

Step-by-step explanation:

To form a triangle, longest length should be less than the sum of the two shorter ones.

4 0
3 years ago
Evaluate lim x→∞ (3x+1)^(4/x), using l'hospital's rule as needed. show all work using proper notation. as you show your work, if
Alborosie
\displaystyle\lim_{x\to\inty}(3x+1)^{4/x}=\lim_{x\to\infty}e^{\ln(3x+1)^{4/x}}=e^{\lim\limits_{x\to\infty}\ln(3x+1)^{4/x}}

\displaystyle\lim_{x\to\infty}\ln(3x+1)^{4/x}=\lim_{x\to\infty}\frac{4\ln(3x+1)}x\stackrel{\mathrm{LHR}}=\lim_{x\to\infty}\frac{4\frac3{3x+1}}1=\lim_{x\to\infty}\frac{12}{3x+1}=0

\implies\displaystyle\lim_{x\to\infty}(3x+1)^{4/x}=e^0=1
4 0
3 years ago
Simplify(1\2)^4 1\16 1\8 1\4
tino4ka555 [31]

Step-by-step explanation:

(1\2)^4 x 1\16 x 1\8 x 1\4 [1/2^4=16]

1/16 x 1/512

=>1/2048

5 0
3 years ago
Other questions:
  • Theorem: The segment joining the midpoints of two sides of a triangle is parallel to the third side and half its length.
    15·2 answers
  • What is the length of AV? Round to the nearest tenth
    14·1 answer
  • I’am between 750 and 850. I have 3 ones and no tens.
    13·1 answer
  • 2a a equals 10 <br><br> 2a+3<br><br> Please help me
    9·1 answer
  • Find the slope between (1,5)(3,9)
    6·1 answer
  • Is 0.0309 greater than 0.05?
    11·1 answer
  • Which ordered pair could you remove from the relation {(–2, –1), (–1, 1), (–1, 0), (0, 1), (1, 0)} so that it becomes a function
    5·2 answers
  • Help pleasseee •-•
    15·1 answer
  • Right answer will get brainlist.
    8·1 answer
  • What is the surface area of a reactangular prism with the width of 5 length of 3 height of 4
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!