<u>Solution and Explanation:</u>
GDP is calculated as follows:
Y = C + G + I + NX
where
C = Consumption
G = Government Expenditure
I = Investment
NX = Net Exports
It is mentioned that in 2015, GDP was 50 million and in 2016, it was 48 million without any change in the factors except NX. It means the net exports that is the difference between export and the import of the country has changed and it has fallen by 2 million.
Answer:
- <u><em>Option B. $1,025 a month for 10 years.</em></u>
Explanation:
Calculate the present value of each option:

Formula:
![PV=C\times \bigg[\dfrac{1}{r}-\dfrac{1}{r(1+r)^t}\bigg]](https://tex.z-dn.net/?f=PV%3DC%5Ctimes%20%5Cbigg%5B%5Cdfrac%7B1%7D%7Br%7D-%5Cdfrac%7B1%7D%7Br%281%2Br%29%5Et%7D%5Cbigg%5D)
Where:
- PV is the present value of the constant monthly payments
- r is the monthly rate
- t is the number of moths
<u>1. Option A will provide $1,500 a month for 6 years. </u>
![PV=$\ 1,500\times \bigg[\dfrac{1}{(0.005\overline 6}-\dfrac{1}{0.005\overline 6(1+0.005\overline 6)^{(6\times12)}}\bigg]](https://tex.z-dn.net/?f=PV%3D%24%5C%201%2C500%5Ctimes%20%5Cbigg%5B%5Cdfrac%7B1%7D%7B%280.005%5Coverline%206%7D-%5Cdfrac%7B1%7D%7B0.005%5Coverline%206%281%2B0.005%5Coverline%206%29%5E%7B%286%5Ctimes12%29%7D%7D%5Cbigg%5D)

<u>2. Option B will pay $1,025 a month for 10 years. </u>
![PV=$\ 1,025\times \bigg[\dfrac{1}{(0.005\overline 6}-\dfrac{1}{0.005\overline 6(1+0.005\overline 6)^{(10\times12)}}\bigg]](https://tex.z-dn.net/?f=PV%3D%24%5C%201%2C025%5Ctimes%20%5Cbigg%5B%5Cdfrac%7B1%7D%7B%280.005%5Coverline%206%7D-%5Cdfrac%7B1%7D%7B0.005%5Coverline%206%281%2B0.005%5Coverline%206%29%5E%7B%2810%5Ctimes12%29%7D%7D%5Cbigg%5D)

<u>3. Option C offers $85,000 as a lump sum payment today. </u>
<u></u>
<h2 /><h2> Conclusion:</h2>
The present value of the<em> option B, $1,025 a month for 10 years</em>, has a the greatest present value, thus since he is only concerned with the <em>financial aspects of the offier</em>, this is the one he should select.
I'm pretty sure it is interest
Answer:
I think it's C
Explanation:
Hshdh lowballing is basically changing the price lower or higher until someone agrees right.