Looks like the given limit is

With some simple algebra, we can rewrite

then distribute the limit over the product,

The first limit is 0, since 1/3ⁿ is a positive, decreasing sequence. But before claiming the overall limit is also 0, we need to show that the second limit is also finite.
For the second limit, recall the definition of the constant, <em>e</em> :

To make our limit resemble this one more closely, make a substitution; replace 9/(<em>n</em> - 9) with 1/<em>m</em>, so that

From the relation 9<em>m</em> = <em>n</em> - 9, we see that <em>m</em> also approaches infinity as <em>n</em> approaches infinity. So, the second limit is rewritten as

Now we apply some more properties of multiplication and limits:

So, the overall limit is indeed 0:

An 8th-degree polynomial needs 9 terms that involve
x⁸, x⁷, ..., x¹, and x⁰.
x=10 implies that (x-10) is a factor of the polynomial according to the Remainder theorem.
Let the polynomial be of the form
f(x) = a₁x⁸ + a₂x⁷ + a₃x⁶ +a₄x⁵ + a₅x⁴ + a₆x³ + a₇x² + a₈x + a₉
The first few lines of the synthetic division are
10 | a₁ a₂ a₃ a₄ a₅ a₆ a₇ a₈ a₉ ( the first row has 9 coefficients)
-----------------------------------------
a₁
Answer:
The first row has 9 coefficients.
Answer:
x-values
independent variable
Step-by-step explanation:
x (the independent variable) is the domain
y (the dependent variable) is the range
Well... Basically, you should prove this by SSS property(side-side-side). It's fair to say that the length of a side is equal to itself so The line that cuts through the rectangle is a side for both rectangles. Thus because of the given, all the sides of the triangles are equal to one another. This is a very important trick for geometry(I remember using it a lot).
Hope this helps!