Given

To obtain the minimum value of y, we first take the derivative of y
The derivative of y is:

Equating

gives the minimum value we require.
Doing that, we have:

So that

Therefore, the minimum value is x = 3
The volume of the rectangular prism:
V = length × width × height
![60x^3+145x^2+70x=5x(12x^2+29x+14)=5x(12x^2+21x+8x+14)\\\\=5x[3x(4x+7)+2(4x+7)]=5x(4x+7)(3x+2)](https://tex.z-dn.net/?f=60x%5E3%2B145x%5E2%2B70x%3D5x%2812x%5E2%2B29x%2B14%29%3D5x%2812x%5E2%2B21x%2B8x%2B14%29%5C%5C%5C%5C%3D5x%5B3x%284x%2B7%29%2B2%284x%2B7%29%5D%3D5x%284x%2B7%29%283x%2B2%29)
Answer:
cot(<em>θ</em>) = cos(<em>θ</em>)/sin(<em>θ</em>)
So if both cot(<em>θ</em>) and cos(<em>θ</em>) are negative, that means sin(<em>θ</em>) must be positive.
Recall that
cot²(<em>θ</em>) + 1 = csc²(<em>θ</em>) = 1/sin²(<em>θ</em>)
so that
sin²(<em>θ</em>) = 1/(cot²(<em>θ</em>) + 1)
sin(<em>θ</em>) = 1 / √(cot²(<em>θ</em>) + 1)
Plug in cot(<em>θ</em>) = -2 and solve for sin(<em>θ</em>) :
sin(<em>θ</em>) = 1 / √((-2)² + 1)
sin(<em>θ</em>) = 1/√(5)
Answer:
yes........these all are....
Answer:
u need to put a picture so we know what your talking about