Answer:
make a graphical representation for our case do we have infinite lines pass through a point M?
Step-by-step explanation:
If the graphs of the equations do not intersect (for example, if they are parallel), then there are no solutions that are true for both equations. If the graphs of the equations are the same, then there are an infinite number of solutions that are true for both equations.
there is no visible graph
Step-by-step explanation:
The question is incomplete:
If you see that gasoline costs $1.70 in Georgia and $3.40 in California, you can conclude that gasoline is twice as expensive in California as in Georgia. This conclusion from this comparison reflects the function of money as a:
-store of value
-an object with a value that varies sharply from one place to another
-medium of exchange
-unit of account
Answer:
Unit of account
Step-by-step explanation:
-Store of value refers to something that can be kept for a period of time and maintains its value in the future.
-An object with a value that varies sharply from one place to another means that products can have different prices in different places.
-Medium of exchange refers to an object with an standard value that allows you to purchase goods or services.
-Unit of account refers to a numerical unit that allows you to compare the value of products and services.
According to this, the answer is that this conclusion from this comparison reflects the function of money as a unit of account because it indicates that money works as a unit that you can use to compare the value of products, in this case the price of gasoline in different places.
F(b)-F(a)/b-a
A=10 B= -2
F(a) =4 F(b)=17
17-4/-2-10
13/-12
Answer:
666.67π .ft^3
<em>here's</em><em> your</em><em> solution</em>
<em>=</em><em>></em><em> </em><em>radius</em><em> of</em><em> </em><em>cone </em><em>=</em><em> </em><em>1</em><em>0</em><em> </em><em>ft</em>
<em>=</em><em>></em><em> </em><em>height</em><em> of</em><em> </em><em>cone </em><em>=</em><em> </em><em>2</em><em>0</em><em> </em><em>ft</em>
<em>=</em><em>></em><em> </em><em>volume</em><em> of</em><em> </em><em>cone </em><em>=</em><em> </em><em>πr^</em><em>2</em><em>h</em><em>/</em><em>3</em>
<em>=</em><em>></em><em> </em><em>putting</em><em> the</em><em> value</em><em> of</em><em> </em><em>radius</em><em> and</em><em> height</em><em> </em>
<em>=</em><em>></em><em> </em><em> </em><em> </em><em>volume</em><em> </em><em>=</em><em> </em><em>1</em><em>0</em><em>^</em><em>2</em><em>*</em><em>2</em><em>0</em><em>/</em><em>3</em><em>π</em>
<em>=</em><em>></em><em> </em><em>volume</em><em> </em><em>=</em><em> </em><em>6</em><em>6</em><em>6</em><em>.</em><em>6</em><em>7</em><em>π</em><em> </em><em>.</em><em>ft^</em><em>3</em>
<em>hope</em><em> it</em><em> helps</em>