Answer:

Step-by-step explanation:
We want to write the trignometric expression:

As an algebraic equation.
First, we can focus on the inner expression. Let θ equal the expression:

Take the secant of both sides:

Since secant is the ratio of the hypotenuse side to the adjacent side, this means that the opposite side is:

By substitutition:

Using an double-angle identity:

We know that the opposite side is √(u² -100), the adjacent side is 10, and the hypotenuse is u. Therefore:

Simplify. Therefore:

Answer:
7.00
Step-by-step explanation:
you subtract the 2 totals.
Answer:
42.95x + 21.95y
Step-by-step explanation:
First, plot the points. Point R would be somewhere in the second Quadrant, point M would be in the first quadrant 1, point B would be in the fourth quadrant, and point S would be on the negative y-axis. A property of rhombi is that their diagonals are perpendicular. One would need to calculate the slopes of the diagonals and determine whether or not they are perpendicular. Lines are perpendicular if and only if their slopes are opposite reciprocals. Example: 2 and -0.5
Formulas needed:
Slope formula:

The figure would look kinda like this:
R
M
S
B
Diagonals are segment RB and segment SM
So, your slope equations would look like this:

and

Slope of RB= -1
Slope of SM=7
Not a rhombus, slopes aren't perpendicular. But this figure may very well be a parallelogram