Answer:
g=9.64m/s^2.
Explanation:
Gravitational field strength (in other words, gravitational acceleration) is given as follows:g=GMR2g=R2GMwhere G=6.674×10−11m3kg⋅s2G=6.674×10−11kg⋅s2m3 is the gravitational constant, M=5.972×1024kgM=5.972×1024kg is the mass of the Earth, and R=6.371×106m+0.06×106m=6.431×106mR=6.371×106m+0.06×106m=6.431×106m is the distance from the center of the Earth to the required point above the surface (radius plus 60 km).
Answer:
For communication to be communicated between you and your cousin who is in Houston,Texas, when a call is made by you, a request is made to the specific phone, and the telephone tower will get the request from the mobile phone. Then a signal is sent via a transmitter underground, by this the satellite communicates with the local receiver in Houston, that is linked to the local tower over there, the tower would request for your cousin's number and connects the two of you, once a link is set.
Explanation:
From the example stated, what is required for such for a far distance, is a communication satellite link.
When a call is made by you, the a connection request is sent to the specified phone.The telephone tower receives the request from The mobile phone. The local tower(Birmingham,Al) is linked to a ground transmitter by the means of a Fiber optical cable.
A signal is sent to satellite via the ground transmitter.The satellite then set's off the local receiver in (Houston,Texas) which on it's end is connected to the local tower there. This tower then ask for your cousin's mobile for a call that will be incoming, a link is set, once he/she receives the call, from there a conversation can be done.
In mathematics, a percentage is a number or ratio expressed as a fraction of 100.
Answer:
In the previous section, we defined circular motion. The simplest case of circular motion is uniform circular motion, where an object travels a circular path at a constant speed. Note that, unlike speed, the linear velocity of an object in circular motion is constantly changing because it is always changing direction. We know from kinematics that acceleration is a change in velocity, either in magnitude or in direction or both. Therefore, an object undergoing uniform circular motion is always accelerating, even though the magnitude of its velocity is constant.
You experience this acceleration yourself every time you ride in a car while it turns a corner. If you hold the steering wheel steady during the turn and move at a constant speed, you are executing uniform circular motion. What you notice is a feeling of sliding (or being flung, depending on the speed) away from the center of the turn. This isn’t an actual force that is acting on you—it only happens because your body wants to continue moving in a straight line (as per Newton’s first law) whereas the car is turning off this straight-line path. Inside the car it appears as if you are forced away from the center of the turn. This fictitious force is known as the centrifugal force. The sharper the curve and the greater your speed, the more noticeable this effect becomes.
Figure 6.7 shows an object moving in a circular path at constant speed. The direction of the instantaneous tangential velocity is shown at two points along the path. Acceleration is in the direction of the change in velocity; in this case it points roughly toward the center of rotation. (The center of rotation is at the center of the circular path). If we imagine Δs becoming smaller and smaller, then the acceleration would point exactly toward the center of rotation, but this case is hard to draw. We call the acceleration of an object moving in uniform circular motion the centripetal acceleration ac because centripetal means center seeking.
hope it helps! stay safe and tell me if im wrong pls :D
(brainliest if you want, or if its right pls) :)